Skip to main content
Log in

The effects of mega-voltage CT scan parameters on offline adaptive radiation therapy

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

TomoTherapy involves image-guided radiation therapy (IGRT) using Mega-voltage CT (MVCT) for each treatment session. The acquired MVCT images can be utilized for the retrospective assessment of dose distribution. The TomoTherapy provides 18 distinct imaging conditions that can be selected based on a combination of algorithms, acquisition pitch, and slice interval. We investigated the accuracy of dose calculation and deformable image registration (DIR) depending on MVCT scan parameters and their effects on adaptive radiation therapy (ART). We acquired image values for density calibration tables (IVDTs) under 18 different MVCT conditions and compared them. The planning CT (pCT) was performed using a thoracic phantom, and an esophageal intensity-modulated radiation therapy (IMRT) plan was created. MVCT images of the thoracic phantom were acquired under each of the 18 conditions, and dose recalculation was performed. DIR was performed on the MVCT images acquired under each condition. The accuracy of DIR, depending on the MVCT scan parameters, was compared using the mean distance to agreement (MDA) and Dice similarity coefficient (DSC). The dose distribution calculated on the MVCT images was deformed using deformed vector fields (DVF). No significant differences were observed in the results of the 18 IVDTs. The esophageal IMRT plan also showed a small dose difference. Regarding verifying the DIR accuracy, the MDA increased, and the DSC decreased as the acquisition pitch and slice interval increased. The difference between the dose distributions after dose mapping was comparable to that before DIR. The MVCT scan parameters had little effect on ART.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwartz DL, Garden AS, Shah SJ, Chronowski G, Sejpal S, Rosenthal DI, Chen Y, Zhang Y, Zhang L, Wong PF, Garcia JA, Kian Ang K, Dong L. Adaptive radiotherapy for head and neck cancer–dosimetric results from a prospective clinical trial. Radiother Oncol. 2013;106(1):80–4.

    Article  PubMed  Google Scholar 

  2. Castadot P, Lee JA, Geets X, Grégoire V. Adaptive radiotherapy of head and neck cancer. Semin Radiat Oncol. 2010;20(2):84–93.

    Article  PubMed  Google Scholar 

  3. Olteanu LA, Berwouts D, Madani I, et al. Comparative dosimetry of three-phase adaptive and non-adaptive dose-painting IMRT for head-and-neck cancer. Radiother Oncol. 2014;111:348–53.

    Article  PubMed  Google Scholar 

  4. Berwouts D, Olteanu LA, Duprez F, et al. Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer: initial results of the phase I clinical trial. Radiother Oncol. 2013;107:310–6.

    Article  PubMed  Google Scholar 

  5. Nishi T, Nishimura Y, Shibata T, et al. Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer. Radiother Oncol. 2013;106:85–9.

    Article  PubMed  Google Scholar 

  6. O’Daniel JC, Garden AS, Schwartz DL, et al. Parotid gland dose in intensity-modulated radiotherapy for head and neck cancer: is what you plan what you get? Int J Radiat Oncol Biol Phys. 2007;69:1290–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee C, Langen KM, Lu W, et al. Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily mega-voltage computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2008;71:1563–71.

    Article  PubMed  Google Scholar 

  8. Elstrom UV, Wysocka BA, Muren LP, et al. Daily kV cone-beam CT and deformable image registration as a method for studying dosimetric consequences of anatomic changes in adaptive IMRT of head and neck cancer. Acta Oncol. 2010;49:1101–8.

    Article  PubMed  Google Scholar 

  9. Zeidan OA, Huddleston AJ, Lee C, et al. A comparison of soft-tissue implanted markers and bony anatomy alignments for image-guided treatments of head-and-neck cancers. Int J Radiat Oncol Biol Phys. 2010;76:767–74.

    Article  PubMed  Google Scholar 

  10. Yang C, Liu F, Ahunbay E, Chang YW, Lawton C, Schultz C, Wang D, Firat S, Erickson B, Li XA. Combined online and offline adaptive radiation therapy: a dosimetric feasibility study. Pract Radiat Oncol. 2014;4(1):e75-83.

    Article  PubMed  Google Scholar 

  11. Nishimura Y, Nakamatsu K, Shibata T, et al. Importance of the initial volume of parotid glands in xerostomia for patients with head and neck cancers treated with IMRT. Jpn J Clin Oncol. 2005;35:375–9.

    Article  PubMed  Google Scholar 

  12. Nishimura Y, Shibata T, Nakamatsu K, et al. A two-step intensity-modulated radiation therapy method for nasopharyngeal cancer: the Kinki University experience. Jpn J Clin Oncol. 2010;40:130–8.

    Article  PubMed  Google Scholar 

  13. Duprez F, De Neve W, De Gersem W, et al. Adaptive dose painting by numbers for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2011;80:1045–55.

    Article  PubMed  Google Scholar 

  14. De Los SJ, Popple R, Agazaryan N, Bayouth JE, Bissonnette JP, Bucci MK, Dieterich S, Dong L, Forster KM, Indelicato D, Langen K, Lehmann J, Mayr N, Parsai I, Salter W, Tomblyn M, Yuh WT, Chetty IJ. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int J Radiat Oncol Biol Phys. 2013;87(1):33–45.

    Article  Google Scholar 

  15. Chen GTY, Sharp GC, Mori S. A review of image-guided radiotherapy. Radiol Phys Technol. 2009;2:1–12.

    Article  PubMed  Google Scholar 

  16. Langen K, Meeks S, Poole D, Wagner T, Willoughby T, Kupelian P, Ruchala K, Haimerl J, Olivera G. The use of mega-voltage CT (MVCT) images for dose recomputations. Phys Med Biol. 2005;50:4259.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu J, Bai T, Gu J, Sun Z, Wei Y, Li B, Yin Y. Effects of mega-voltage computed tomographic scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy. Radiat Oncol. 2018;13(1):80. https://doi.org/10.1186/s13014-018-0989-y. (PMID: 29699582; PMCID: PMC5921977).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen M, Chao E, Lu W. Quantitative characterization of tomotherapy MVCT dosimetry. Med Dosim. 2013;38:280–6.

    Article  PubMed  Google Scholar 

  19. Jung JH, Cho KH, Kim YH, Moon SK, Min CK, Kim WC, Kim ES, Chang AR, Kim TH, Yoon JW, Suh TS, Huh HD. Effect of jaw size in mega-voltage CT on image quality and dose. Med Phys. 2012;39(8):4976–83. https://doi.org/10.1118/1.4736951. (PMID: 22894422).

    Article  PubMed  Google Scholar 

  20. Branchini M, Fiorino C, Dell’Oca I, Belli ML, Perna L, Di Muzio N, Calandrino R, Broggi S. Validation of a method for “dose of the day” calculation in head-neck tomotherapy by using planning ct-to-MVCT deformable image registration. Phys Med. 2017;39:73–9.

    Article  CAS  PubMed  Google Scholar 

  21. Branchini M, Broggi S, Dell’Oca I, Cattaneo GM, Calandrino R, Di Muzio NG, Fiorino C. Skin dose calculation during radiotherapy of head and neck cancer using deformable image registration of planning and mega-voltage computed tomography scans. Phys Imaging Radiat Oncol. 2018;8:44–50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nobnop W, Neamin H, Chitapanarux I, Wanwilairat S, Lorvidhaya V, Sanghangthum T. Accuracy of eight deformable image registration (DIR) methods for tomotherapy mega-voltage computed tomography (MVCT) images. J Med Radiat Sci. 2017;64(4):290–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nobnop W, Chitapanarux I, Neamin H, Wanwilairat S, Lorvidhaya V, Sanghangthum T. Evaluation of deformable image registration (DIR) methods for dose accumulation in nasopharyngeal cancer patients during radiotherapy. Radiol Oncol. 2017;51(4):438–46.

    Article  PubMed  PubMed Central  Google Scholar 

  24. De Marco P, Abdi Osman I, Castellini F, Ricotti R, Leonardi MC, Miglietta E, Cambria R, Origgi D, Jereczek-Fossa BA, Garibaldi C, Cattani F. Image quality and dose evaluation of MVCT TomoTherapy acquisitions: a phantom study. Phys Med. 2019;57:200–6.

    Article  PubMed  Google Scholar 

  25. Velten C, Boyd R, Jeong K, Garg MK, Tomé WA. Recommendations of mega-voltage computed tomography settings for the implementation of adaptive radiotherapy on helical tomotherapy units. J Appl Clin Med Phys. 2020;21(5):87–92.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy Committee task group no. 132. Med Phys. 2017;44:e43–76.

    Article  CAS  PubMed  Google Scholar 

  27. Langen KM, Papanikolaou N, Balog J, Crilly R, Followill D, Goddu SM, Grant W III, Olivera G, Ramsey CR, Shi C. QA for helical tomotherapy: report of the AAPM task group 148a). Med Phys. 2010;37:4817–53.

    Article  PubMed  Google Scholar 

  28. Hoffmann C, Krause S, Stoiber EM, Mohr A, Rieken S, Schramm O, Debus J, Sterzing F, Bendl R, Giske K. Accuracy quantification of a deformable image registration tool applied in a clinical setting. J Appl Clin Med Phys. 2014;15(1):4564.

    Article  PubMed  Google Scholar 

  29. Ramadaan IS, Peick K, Hamilton DA, Evans J, Iupati D, Nicholson A, Greig L, Louwe RJ. Validation of Varian’s SmartAdapt® deformable image registration algorithm for clinical application. Radiat Oncol. 2015;10:73.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Abe T, Tamaki T, Makino S, Ebara T, Hirai R, Miyaura K, Kumazaki Y, Ohno T, Shikama N, Nakano T, Kato S. Assessing cumulative dose distributions in combined radiotherapy for cervical cancer using deformable image registration with pre-imaging preparations. Radiat Oncol. 2014;9:293.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Branch of Kyushu, Japanese Society of Radiological Technology (JSRT), for their guidance and encouragement in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kento Hoshida.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This study was approved by the Institutional Review Board of Kurume University Hospital (No. 2023-057).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshida, K., Ohishi, A., Mizoguchi, A. et al. The effects of mega-voltage CT scan parameters on offline adaptive radiation therapy. Radiol Phys Technol 17, 248–257 (2024). https://doi.org/10.1007/s12194-023-00773-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00773-8

Keywords

Navigation