Skip to main content
Log in

Evaluation of deep learning reconstruction on diffusion-weighted imaging quality and apparent diffusion coefficient using an ice-water phantom

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

This study assessed the influence of deep learning reconstruction (DLR) on the quality of diffusion-weighted images (DWI) and apparent diffusion coefficient (ADC) using an ice-water phantom. An ice-water phantom with known diffusion properties (true ADC = 1.1 × 10–3 mm2/s at 0 °C) was imaged at various b-values (0, 1000, 2000, and 4000 s/mm2) using a 3 T magnetic resonance imaging scanner with slice thicknesses of 1.5 and 3.0 mm. All DWIs were reconstructed with or without DLR. ADC maps were generated using combinations of b-values 0 and 1000, 0 and 2000, and 0 and 4000 s/mm2. Based on the quantitative imaging biomarker alliance profile, the signal-to-noise ratio (SNRs) in DWIs was calculated, and the accuracy, precision, and within-subject parameter variance (wCV) of the ADCs were evaluated. DLR improved the SNR in DWIs with b-values ranging from 0 to 2000s/mm2; however, its effectiveness was diminished at 4000 s/mm2. There was no noticeable difference in the ADCs of images generated with or without implementing DLR. For a slice thickness of 1.5 mm and combined b-values of 0 and 4000 s/mm2, the ADC values were 0.97 × 10–3and 0.98 × 10–3mm2/s with and without DLR, respectively, both being lower than the true ADC value. Furthermore, DLR enhanced the precision and wCV of the ADC measurements. DLR can enhance the SNR, repeatability, and precision of ADC measurements; however, it does not improve their accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data statement

The data that has been used is confidential.

References

  1. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol. 2016;69:16–40. https://doi.org/10.1016/j.eururo.2015.08.052.

    Article  PubMed  Google Scholar 

  2. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Reporting PI, Version DS, et al. Update of prostate imaging reporting and data system version 2. Eur Urol. 2019;2019(76):340–51. https://doi.org/10.1016/j.eururo.2019.02.033.

    Article  Google Scholar 

  3. Lee SI, Atri M. 2018 FIGO staging system for uterine cervical cancer: enter cross-sectional imaging. Radiology. 2019;292:15–24. https://doi.org/10.1148/radiol.2019190088.

    Article  PubMed  Google Scholar 

  4. Le Bihan DBE, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7. https://doi.org/10.1148/radiology.161.2.3763909.

    Article  PubMed  Google Scholar 

  5. Surov A, Eger KI, Potratz J, Gottschling S, Wienke A, Jechorek D. Apparent diffusion coefficient correlates with different histopathological features in several intrahepatic tumors. Eur Radiol. 2023;33:5955–64. https://doi.org/10.1007/s00330-023-09788-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ueda T, Ohno Y, Yamamoto K, Murayama K, Ikedo M, Yui M, et al. Deep learning reconstruction of diffusion-weighted mri improves image quality for prostatic imaging. Radiology. 2022;303:373–81. https://doi.org/10.1148/radiol.204097.

    Article  PubMed  Google Scholar 

  7. Kidoh M, Shinoda K, Kitajima M, Isogawa K, Nambu M, Uetani H, et al. Deep learning based noise reduction for brain mr imaging: tests on phantoms and healthy volunteers. Magn Reson Med Sci. 2020;19:195–206. https://doi.org/10.2463/mrms.mp.2019-0018.

    Article  PubMed  Google Scholar 

  8. Sagawa H, Fushimi Y, Nakajima S, Fujimoto K, Miyake KK, Numamoto H, et al. Deep learning-based noise reduction for fast volume diffusion tensor imaging: assessing the noise reduction effect and reliability of diffusion metrics. Magn Reson Med Sci. 2021;20:450–6. https://doi.org/10.2463/mrms.tn.2020-0061.

    Article  PubMed  Google Scholar 

  9. Tanabe M, Higashi M, Yonezawa T, Yamaguchi T, Iida E, Furukawa M, et al. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique. Magn Reson Imaging. 2021;80:121–6. https://doi.org/10.1016/j.mri.2021.05.001.

    Article  PubMed  Google Scholar 

  10. Ueda T, Ohno Y, Yamamoto K, Iwase A, Fukuba T, Hanamatsu S, et al. Compressed sensing and deep learning reconstruction for women’s pelvic MRI denoising: utility for improving image quality and examination time in routine clinical practice. Eur J Radiol. 2021;134: 109430. https://doi.org/10.1016/j.ejrad.2020.109430.

    Article  PubMed  Google Scholar 

  11. Yokota Y, Takeda C, Kidoh M, Oda S, Aoki R, Ito K, et al. Effects of deep learning reconstruction technique in high-resolution non-contrast magnetic resonance coronary angiography at a 3-tesla machine. Can Assoc Radiol J. 2021;72:120–7. https://doi.org/10.1177/0846537119900469.

    Article  PubMed  Google Scholar 

  12. Kashiwagi N, Sakai M, Tsukabe A, Yamashita Y, Fujiwara M, Yamagata K, et al. Ultrafast cervcial spine MRI protocol using deep learning-based reconstruction: diagnostic equivalence to a conventional protocol. Eur J Radiol. 2022;156: 110531. https://doi.org/10.1016/j.ejrad.2022.110531.

    Article  PubMed  Google Scholar 

  13. Akai H, Yasaka K, Sugawara H, Tajima T, Kamitani M, Furuta T, et al. Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study. BMC Med Imaging. 2023;23:5. https://doi.org/10.1186/s12880-023-00962-2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hanamatsu S, Murayama K, Ohno Y, Yamamoto K, Yui M, Toyama H. Deep learning reconstruction for brain diffusion-weighted imaging: efficacy for image quality improvement, apparent diffusion coefficient assessment, and intravoxel incoherent motion evaluation in in vitro and in vivo studies. Diagn Interv Radiol. 2023. https://doi.org/10.4274/dir.2023.232149.

    Article  PubMed  PubMed Central  Google Scholar 

  15. RSNA Quantitative imaging Biomarkers Alliance. QIBA Profile: Magnetic Resonance Diffusion-Weighted Imaging (DWI) of the Apparent Diffusion Coefficient (ADC); 2022. https://qibawiki.rsna.org/images/b/b0/QIBA_DWIProfile_Stage3_15Dec2022_v3.pdf. Accessed 9 Apr 2023.

  16. Chenevert TL, Galban CJ, Ivancevic MK, Rohrer SE, Londy FJ, Kwee TC, et al. Diffusion coefficient measurement using a temperature-controlled fluid for quality control in multicenter studies. J Magn Reson Imaging. 2011;34:983–7. https://doi.org/10.1002/jmri.22363.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Malyarenko D, Galban CJ, Londy FJ, Meyer CR, Johnson TD, Rehemtulla A, et al. Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. J Magn Reson Imaging. 2013;37:1238–46. https://doi.org/10.1002/jmri.23825.

    Article  PubMed  Google Scholar 

  18. Doblas S, Almeida GS, Ble FX, Garteiser P, Hoff BA, McIntyre DJ, et al. Apparent diffusion coefficient is highly reproducible on preclinical imaging systems: evidence from a seven-center multivendor study. J Magn Reson Imaging. 2015;42:1759–64. https://doi.org/10.1002/jmri.24955.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yoshida T, Urikura A, Hosokawa Y, Shirata K, Nakaya Y, Endo M. Apparent diffusion coefficient measurement using thin-slice diffusion-weighted magnetic resonance imaging: assessment of measurement errors and repeatability. Radiol Phys Technol. 2021;14:203–9. https://doi.org/10.1007/s12194-021-00616-4.

    Article  PubMed  Google Scholar 

  20. Prah DE, Paulson ES, Nencka AS, Schmainda KM. A simple method for rectified noise floor suppression: phase-corrected real data reconstruction with application to diffusion-weighted imaging. Magn Reson Med. 2010;64:418–29. https://doi.org/10.1002/mrm.22407.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ohno N, Miyati T, Kobayashi S, Gabata T. Modified triexponential analysis of intravoxel incoherent motion for brain perfusion and diffusion. J Magn Reson Imaging. 2016;43:818–23. https://doi.org/10.1002/jmri.25048.

    Article  PubMed  Google Scholar 

  22. Mournet S, Okubo G, Koubiyr I, Zhang B, Kusahara H, Prevost VH, et al. Higher b-values improve the correlation between diffusion MRI and the cortical microarchitecture. Neuroradiology. 2020;62:1411–9. https://doi.org/10.1007/s00234-020-02462-4.

    Article  PubMed  Google Scholar 

  23. Michoux NF, Ceranka JW, Vandemeulebroucke J, Peeters F, Lu P, Absil J, et al. Repeatability and reproducibility of ADC measurements: a prospective multicenter whole-body-MRI study. Eur Radiol. 2021;31:4514–27. https://doi.org/10.1007/s00330-020-07522-0.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Naoko Mita and Shimpei Yano at Teikyo University Hospital and Seiko Shimizu at Canon Medical Systems Corporation for their technical support. We would like to thank Editage (www.editage.jp) for English language editing.

Funding

This study was partly supported by JSPS KAKENHI (grant number 23K07142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Hayashi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethics approval

This study did not involve any experiments using human participants or animals.

Informed consent

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, T., Kojima, S., Ito, T. et al. Evaluation of deep learning reconstruction on diffusion-weighted imaging quality and apparent diffusion coefficient using an ice-water phantom. Radiol Phys Technol 17, 186–194 (2024). https://doi.org/10.1007/s12194-023-00765-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00765-8

Keywords

Navigation