Skip to main content
Log in

Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

An Erratum to this article was published on 06 November 2013

Abstract

Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability. We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bechtold DA, Brown IR (2000) Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia. Brain Res Mol Brain Res 75:309–320

    Article  PubMed  CAS  Google Scholar 

  • Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E, Hocsak E, Farkas R, Sumegi B, Gallyas F Jr (2007) Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol 86:161–171

    Article  PubMed  CAS  Google Scholar 

  • Bjorkdahl C, Sjogren MJ, Zhou X, Concha H, Avila J, Winblad B, Pei JJ (2008) Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments. J Neurosci Res 86:1343–1352

    Article  PubMed  Google Scholar 

  • Bonefeld BE, Elfving B, Wegener G (2008) Reference genes for normalization: a study of rat brain tissue. Synapse 62:302–309

    Article  PubMed  CAS  Google Scholar 

  • Boyd SD (2008) Everything you wanted to know about small RNA but were afraid to ask. Lab Invest 88:569–578

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Sandmann-Kiel D, Rub U, Schultz C (2001) Nerve cells expressing heat-shock proteins in Parkinson's disease. Acta Neuropathol 102:449–454

    PubMed  CAS  Google Scholar 

  • Brocker C, Thompson DC, Vasiliou V (2010) The role of hyperosmotic stress in inflammation and disease. Biomol Concepts 3:345–364

    Google Scholar 

  • Butterfield LH, Merino A, Golub SH, Shau H (1999) From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid Redox Signal 1:385–402

    Article  PubMed  CAS  Google Scholar 

  • Carpenter RL, Jiang Y, Jing Y, He J, Rojanasakul Y, Liu LZ, Jiang BH (2011) Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1. Biochem Biophys Res Commun 414:533–538

    Article  PubMed  CAS  Google Scholar 

  • Clark JF, Harm A, Saffire A, Biehle SJ, Lu A, Pyne-Geithman GJ (2011) Bilirubin oxidation products seen post subarachnoid hemorrhage have greater effects on aged rat brain compared to young. Acta Neurochir Suppl 110:157–162

    PubMed  Google Scholar 

  • Crippa V, Carra S, Rusmini P, Sau D, Bolzoni E, Bendotti C, De Biasi S, Poletti A (2010) A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Autophagy 6:958–960.

    Google Scholar 

  • David JC, Boelens WC, Grongnet JF (2006) Up-regulation of heat shock protein HSP 20 in the hippocampus as an early response to hypoxia of the newborn. J Neurochem 99:570–581

    Article  PubMed  CAS  Google Scholar 

  • DeGracia DJ, Jamison JT, Szymanski JJ, Lewis MK (2008) Translation arrest and ribonomics in post-ischemic brain: layers and layers of players. J Neurochem 106:2288–2301

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann-Schuppert A, Schnittler HJ (1997) A simple assay for quantification of protein in tissue sections, cell cultures, and cell homogenates, and of protein immobilized on solid surfaces. Cell Tissue Res 288:119–126

    Article  PubMed  CAS  Google Scholar 

  • Ebenezer PJ, Weidner AM, LeVine H 3rd, Markesbery WR, Murphy MP, Zhang L, Dasuri K, Fernandez-Kim SO, Bruce-Keller AJ, Gavilan E, Keller JN (2010) Neuron specific toxicity of oligomeric amyloid-beta: role for JUN-kinase and oxidative stress. J Alzheimers Dis 22:839–848

    PubMed  CAS  Google Scholar 

  • Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL, Schagina O, Verpoorten N, Van Impe K, Fedotov V, Dadali E, Auer-Grumbach M, Windpassinger C, Wagner K, Mitrovic Z, Hilton-Jones D, Talbot K, Martin JJ, Vasserman N, Tverskaya S, Polyakov A, Liem RK, Gettemans J, Robberecht W, De Jonghe P, Timmerman V (2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-tooth disease and distal hereditary motor neuropathy. Nat Genet 36:602–606

    Article  PubMed  CAS  Google Scholar 

  • Fahling M (2009) Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia. Acta Physiol (Oxf) 195:205–230

    Article  CAS  Google Scholar 

  • Follit JA, Xu F, Keady BT, Pazour GJ (2009) Characterization of mouse IFT complex B. Cell Motil Cytoskeleton 66:457–468

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Mizuno Y, Takatama M, Okamoto K (2006) Increased neuronal expression of alpha B-crystallin in human olivary hypertrophy. Neuropathology 26:196–200

    Article  PubMed  Google Scholar 

  • Garcia-Lax N, Tomas-Roca L, Marin F (2012) Developmental expression pattern of Hspb8 mRNA in the mouse brain: analysis through online databases. Anat Rec (Hoboken) 295:492–503.

    Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  PubMed  CAS  Google Scholar 

  • Hebb MO, Myers TL, Clarke DB (2006) Enhanced expression of heat shock protein 27 is correlated with axonal regeneration in mature retinal ganglion cells. Brain Res 1073–1074:146–150

    Article  PubMed  Google Scholar 

  • Heinzel W, Vogt A, Kallee E, Faller W (1965) A new method for the quantitative determination of antibody and antigen protein, with a sensitivity to five micrograms. J Lab Clin Med 66:334–340

    PubMed  CAS  Google Scholar 

  • Houlden H, Laura M, Wavrant-De Vrieze F, Blake J, Wood N, Reilly MM (2008) Mutations in the HSP27 (HSPB1) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2. Neurology 71:1660–1668

    Article  PubMed  CAS  Google Scholar 

  • Irobi J, Van Impe K, Seeman P, Jordanova A, Dierick I, Verpoorten N, Michalik A, De Vriendt E, Jacobs A, Van Gerwen V, Vennekens K, Mazanec R, Tournev I, Hilton-Jones D, Talbot K, Kremensky I, Van Den Bosch L, Robberecht W, Van Vandekerckhove J, Van Broeckhoven C, Gettemans J, De Jonghe P, Timmerman V (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 36:597–601

    Article  PubMed  CAS  Google Scholar 

  • Kalesnykas G, Tuulos T, Uusitalo H, Jolkkonen J (2008) Neurodegeneration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience 155:937–947

    Article  PubMed  CAS  Google Scholar 

  • Kappe G, Boelens WC, de Jong WW (2010) Why proteins without an alpha-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Stress Chaperones 15:457–461

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Liu Y, Kogure K, Kato K (1994) Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. Brain Res 634:235–244

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Araki T, Itoyama Y, Kogure K, Kato K (1995) An immunohistochemical study of heat shock protein-27 in the hippocampus in a gerbil model of cerebral ischemia and ischemic tolerance. Neuroscience 68:65–71

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Hayashi H, Nakashima K, Nanba E, Kato M, Hirano A, Nakano I, Asayama K, Ohama E (1997) Pathological characterization of astrocytic hyaline inclusions in familial amyotrophic lateral sclerosis. Am J Pathol 151:611–620

    PubMed  CAS  Google Scholar 

  • Kato K, Katoh-Semba R, Takeuchi IK, Ito H, Kamei K (1999) Responses of heat shock proteins hsp27, alphaB-crystallin, and hsp70 in rat brain after kainic acid-induced seizure activity. J Neurochem 73:229–236

    Article  PubMed  CAS  Google Scholar 

  • Keady BT, Samtani R, Tobita K, Tsuchya M, San Agustin JT, Follit JA, Jonassen JA, Subramanian R, Lo CW, Pazour GJ (2012) IFT25 links the signal-dependent movement of hedgehog components to intraflagellar transport. Dev Cell 22:940–951

    Article  PubMed  CAS  Google Scholar 

  • Kirbach BB, Golenhofen N (2011) Differential expression and induction of small heat shock proteins in rat brain and cultured hippocampal neurons. J Neurosci Res 89:162–175

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296

    Article  PubMed  Google Scholar 

  • Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K et al (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24

    Article  PubMed  CAS  Google Scholar 

  • Kloskowska E, Bruton JD, Winblad B, Benedikz E (2008) The APP670/671 mutation alters calcium signaling and response to hyperosmotic stress in rat primary hippocampal neurons. Neurosci Lett 444:275–279

    Article  PubMed  CAS  Google Scholar 

  • Kolb SJ, Snyder PJ, Poi EJ, Renard EA, Bartlett A, Gu S, Sutton S, Arnold WD, Freimer ML, Lawson VH, Kissel JT, Prior TW (2010) Mutant small heat shock protein B3 causes motor neuropathy: utility of a candidate gene approach. Neurology 74:502–506

    Article  PubMed  CAS  Google Scholar 

  • Krueger-Naug AM, Hopkins DA, Armstrong JN, Plumier JC, Currie RW (2000) Hyperthermic induction of the 27-kDa heat shock protein (Hsp27) in neuroglia and neurons of the rat central nervous system. J Comp Neurol 428:495–510

    Article  PubMed  CAS  Google Scholar 

  • Levraut J, Iwase H, Shao ZH, Vanden Hoek TL, Schumacker PT (2003) Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. Am J Physiol Heart Circ Physiol 284:H549–558

    PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Loyher ML, Mutin M, Woo SK, Kwon HM, Tappaz ML (2004) Transcription factor tonicity-responsive enhancer-binding protein (TonEBP) which transactivates osmoprotective genes is expressed and upregulated following acute systemic hypertonicity in neurons in brain. Neuroscience 124:89–104

    Article  PubMed  CAS  Google Scholar 

  • Lu A, Ran RQ, Clark J, Reilly M, Nee A, Sharp FR (2002) 17-Beta-estradiol induces heat shock proteins in brain arteries and potentiates ischemic heat shock protein induction in glia and neurons. J Cereb Blood Flow Metab 22:183–195

    Article  PubMed  CAS  Google Scholar 

  • McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–3837

    Article  PubMed  CAS  Google Scholar 

  • Minami M, Mizutani T, Kawanishi R, Suzuki Y, Mori H (2003) Neuronal expression of alphaB crystallin in cerebral infarction. Acta Neuropathol 105:549–554

    PubMed  CAS  Google Scholar 

  • Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  PubMed  CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  • Mymrikov EV, Seit-Nebi AS, Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91:1123–1159

    Article  PubMed  CAS  Google Scholar 

  • Namgung U, Xia Z (2000) Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase 3 and p38 mitogen-activated protein kinase. J Neurosci 20:6442–6451

    PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–1249

    Article  PubMed  CAS  Google Scholar 

  • Niwa M, Hara A, Taguchi A, Aoki H, Kozawa O, Mori H (2009) Spatiotemporal expression of Hsp20 and its phosphorylation in hippocampal CA1 pyramidal neurons after transient forebrain ischemia. Neurol Res 31:721–727

    Article  PubMed  CAS  Google Scholar 

  • Piao CS, Kim SW, Kim JB, Lee JK (2005) Co-induction of alphaB-crystallin and MAPKAPK-2 in astrocytes in the penumbra after transient focal cerebral ischemia. Exp Brain Res 163:421–429

    Article  PubMed  CAS  Google Scholar 

  • Plamondon H, Blondeau N, Heurteaux C, Lazdunski M (1999) Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and K(ATP) channels. J Cereb Blood Flow Metab 19:1296–1308

    Article  PubMed  CAS  Google Scholar 

  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals and brain aging. Clin Geriatr Med 20:329–359

    Article  PubMed  Google Scholar 

  • Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan GC (2009) MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119:2357–2366

    Article  PubMed  CAS  Google Scholar 

  • Renkawek K, Voorter CE, Bosman GJ, van Workum FP, de Jong WW (1994) Expression of alpha B-crystallin in Alzheimer's disease. Acta Neuropathol 87:155–160

    Article  PubMed  CAS  Google Scholar 

  • Renkawek K, Stege GJ, Bosman GJ (1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson's disease. Neuroreport 10:2273–2276

    Article  PubMed  CAS  Google Scholar 

  • Repetto G, Sanz P, Repetto M (1994) Comparative in vitro effects of sodium arsenite and sodium arsenate on neuroblastoma cells. Toxicology 92:143–153

    Article  PubMed  CAS  Google Scholar 

  • Rios R, Zarazua S, Santoyo ME, Sepulveda-Saavedra J, Romero-Diaz V, Jimenez V, Perez-Severiano F, Vidal-Cantu G, Delgado JM, Jimenez-Capdeville ME (2009) Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology 261:68–75

    Article  PubMed  CAS  Google Scholar 

  • Rutledge RG, Cote C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31:e93

    Article  PubMed  CAS  Google Scholar 

  • Satoh JI, Kim SU (1995) Differential expression of heat shock protein HSP27 in human neurons and glial cells in culture. J Neurosci Res 41:805–818

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, Bartelt-Kirbach B, Golenhofen N (2012) Phosphorylation-dependent subcellular localization of the small heat shock proteins HspB1/Hsp25 and HspB5/alphaB-crystallin in cultured hippocampal neurons. Histochem Cell Biol 138:407–418

    Article  PubMed  CAS  Google Scholar 

  • Schwarz L, Vollmer G, Richter-Landsberg C (2010) The small heat shock protein HSP25/27 (HspB1) is abundant in cultured astrocytes and associated with astrocytic pathology in progressive supranuclear palsy and corticobasal cegeneration. Int J Cell Biol. doi:10.1155/2010/717520

  • Selcen D, Engel AG (2003) Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. Ann Neurol 54:804–810

    Article  PubMed  CAS  Google Scholar 

  • Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer's disease. J Neurol Sci 119:203–208

    Article  PubMed  CAS  Google Scholar 

  • Tang B, Liu X, Zhao G, Luo W, Xia K, Pan Q, Cai F, Hu Z, Zhang C, Chen B, Zhang F, Shen L, Zhang R, Jiang H (2005) Mutation analysis of the small heat shock protein 27 gene in Chinese patients with Charcot-Marie-tooth disease. Arch Neurol 62:1201–1207

    Article  PubMed  Google Scholar 

  • Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Fan ZC, Williamson SM, Qin H (2009) Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas. PLoS One 4:e5384

    Article  PubMed  Google Scholar 

  • Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, Kusters B, Maat-Schieman ML, de Waal RM, Verbeek MM (2006a) Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol 111:139–149

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmus MM, Otte-Holler I, Wesseling P, de Waal RM, Boelens WC, Verbeek MM (2006b) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer's disease brains. Neuropathol Appl Neurobiol 32:119–130

    Article  PubMed  CAS  Google Scholar 

  • Yang XS, He GL, Hao YT, Xiao Y, Chen CH, Zhang GB, Yu ZP (2012) Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull 88:371–378

    Article  PubMed  Google Scholar 

  • Yew EH, Cheung NS, Choy MS, Qi RZ, Lee AY, Peng ZF, Melendez AJ, Manikandan J, Koay ES, Chiu LL, Ng WL, Whiteman M, Kandiah J, Halliwell B (2005) Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses: a microarray analysis. J Neurochem 94:943–956

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Bianca Mekle, Diana Reinhardt, and Silke Zschemisch for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Golenhofen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 897 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartelt-Kirbach, B., Golenhofen, N. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons. Cell Stress and Chaperones 19, 145–153 (2014). https://doi.org/10.1007/s12192-013-0452-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-013-0452-9

Keywords

Navigation