Skip to main content
Log in

Why proteins without an α-crystallin domain should not be included in the human small heat shock protein family HSPB

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The presence of an α-crystallin domain documents the evolutionary relatedness of the ubiquitous family of small heat shock proteins. Sequence and three-dimensional structure provide no evidence for the presence of such a domain in HSPC034, recently proposed as the 11th member of the human HSPB family. Also, phylogenetic analyses detect no relationship between HSPC034 and the human HSPB1–10 sequences. Arguments are provided as to why inclusion in the HSPB family of proteins like HSPC034, which resemble small heat shock proteins in being heat-inducible and having chaperone-like properties and a low monomeric mass, but are evolutionarily unrelated, is misleading and confusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

ACD:

α-crystallin domain

References

  • Bagnéris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. J Mol Biol 392:1242–1252

    Article  PubMed  Google Scholar 

  • Bellyei S, Szigeti A, Boronkai A, Pozsgai E, Gomori E, Melegh B, Janaky T, Bognar Z, Hocsak E, Sumegi B, Gallyas F Jr (2007a) Inhibition of cell death by a novel 16.2 kD heat shock protein predominantly via Hsp90 mediated lipid rafts stabilization and Akt activation pathway. Apoptosis 12:97–112

    Article  CAS  PubMed  Google Scholar 

  • Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E, Hocsak E, Farkas R, Sumegi B, Gallyas F Jr (2007b) Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol 86:161–171

    Article  CAS  PubMed  Google Scholar 

  • Bohn H, Winckler W (1991) Isolation and characterization of five new soluble placental tissue proteins (PP22, PP23, PP24, PP25, PP26). Arch Gynecol Obstet 248:111–115

    Article  CAS  PubMed  Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JAM (1998) Genealogy of the alpha-crystallin–small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  • Elicker KS, Hutson LD (2007) Genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish. Gene 403:60–69

    Article  CAS  PubMed  Google Scholar 

  • Follit JA, Xu F, Keady BT, Pazour GJ (2009) Characterization of mouse IFT complex B. Cell Motil Cytoskeleton 66:457–468

    Article  CAS  PubMed  Google Scholar 

  • Fontaine JM, Rest JS, Welsh MJ, Benndorf R (2003) The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress Chaperones 8:62–69

    Article  CAS  PubMed  Google Scholar 

  • Franck E, Madsen O, van Rheede T, Ricard G, Huynen MA, de Jong WW (2004) Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol 59:792–805

    Article  CAS  PubMed  Google Scholar 

  • Gnanasekar M, Dakshinamoorthy G, Ramaswamy K (2009) Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun. 386:333–337

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  CAS  PubMed  Google Scholar 

  • Heikkila JJ (2004) Regulation and function of small heat shock protein genes during amphibian development. J Cell Biochem 93:672–680

    Article  CAS  PubMed  Google Scholar 

  • Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A 79:2360–2364

    Article  CAS  PubMed  Google Scholar 

  • Jehle S, van Rossum B, Stout JR, Noguchi SM, Falber K, Rehbein K, Oschkinat H, Klevit RE, Rajagopal P (2009) αB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J Mol Biol 385:1481–1497

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW (2003) The human genome encodes 10 α-crystallin-related small heat shock proteins: HspB1–10. Cell Stress Chaperones 8:53–61

    Article  PubMed  Google Scholar 

  • Kiedzierska A, Smietana K, Czepczynska H, Otlewski J (2007) Structural similarities and functional diversity of eukaryotic discoidin-like domains. Biochim Biophys Acta 1774:1069–1078

    CAS  PubMed  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto H, Vigh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93

    Article  CAS  PubMed  Google Scholar 

  • Pozsgai E, Gomori E, Szigeti A, Boronkai A, Gallyas F Jr, Sumegi B, Bellyei S (2007) Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2) and malignancy in brain tumors. BMC Cancer 7:233

    Article  PubMed  Google Scholar 

  • Ramelot TA, Raman S, Kuzin AP, Xiao R, Ma LC, Acton TB, Hunt JF, Montelione GT, Baker D, Kennedy MA (2009) Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Proteins 75:147–167

    Article  CAS  PubMed  Google Scholar 

  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476

    Article  CAS  PubMed  Google Scholar 

  • Taylor RP, Benjamin IJ (2005) Small heat shock proteins: a new classification scheme in mammals. J Mol Cell Cardiol 38:433–444

    Article  CAS  PubMed  Google Scholar 

  • van de Schootbrugge C, Boelens WC (2009) Introduction to small heat shock proteins. In: Arrigo AP, Simon S (eds) Small stress proteins and human diseases. Nova Sciences, New York in press

    Google Scholar 

  • van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  Google Scholar 

  • Waters ER, Vierling E (1999) Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. Proc Natl Acad Sci U S A 96:14394–14399

    Article  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 13:127–142

    Article  Google Scholar 

  • Wistow G, Graham C (1995) The duck gene for alpha B-crystallin shows evolutionary conservation of discrete promoter elements but lacks heat and osmotic shock response. Biochim Biophys Acta 1263:105–113

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried W. de Jong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Alignment of sHSP and HSPC034 sequences. Names and accession numbers are: human Hs_HspB1 (P04792), Hs_HspB2 (Q16082), Hs_HspB3 (Q12988), Hs_HspB4(P02489), Hs_HspB5 (P02511), Hs_HspB6 (O14558), Hs_HspB7 (Q9UBY9), Hs_HspB8 (Q9UJY1), Hs_HSpB9 (Q9BQS6), Hs_HspB10 (Q14990); mouse Mm_HspB1 (P14602), Mm_HspB2 (Q99PR8), Mm_HspB3 (Q9QZ57), Mm_HspB4 (P24622), Mm_HspB5 (P23927), Mm_HspB6 (Q5EBG6), Mm_HspB7 (P35385), Mm_HspB8 (Q9JK92), Mm_HspB9 (Q9DAM3), Mm_HspB10 (Q61999); chicken Gg_HspB1 (Q00649), Gg_HspB2 (NP_001001527), Gg_HspB3 (XP_001231558), Gg_HspB4 (P02504), Gg_HspB5 (Q05713), Gg_HspB7 (XP_427836), Gg_HspB8 (XP_415280), Gg_HspB10(XP_418368); wheat Tae_Hsp16.9 (CAA45902); Methanococcus jannasschii Mj_Hsp16.5 (Q57733); human Hs_HSPC034 (Q9Y547), mouse Mm_HSPC034 (Q9D6H2), chicken Gg_HSPC034 (XP_422488), amphioxus Bf_HSPC0234 (XP_002207873), Trichoplax adhaerens Tad_HSPC034 (XP_002114382), and T. vaginalis Tv_HSPC034 (XP_001326124). Alignment is obtained with ClustalW v1.83 at default settings, without manual editing, to avoid any subjective influences (GIF 121 KB)

High-resolution image (TIFF 1583 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappé, G., Boelens, W.C. & de Jong, W.W. Why proteins without an α-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Stress and Chaperones 15, 457–461 (2010). https://doi.org/10.1007/s12192-009-0155-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0155-4

Keywords

Navigation