Skip to main content
Log in

Radiographic Evaluation of Pediatric Patients with Patellofemoral Instability

  • Pediatric Orthopedics (I Swarup, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to highlight the radiographic assessments of utility in the evaluation of a pediatric patient with patellofemoral instability to facilitate a thorough work-up. Understanding of these measures is useful in understanding evolving research in this field, providing accurate patient risk assessment, and appropriately directing surgical decision-making.

Recent Findings

Recent literature has broadened the radiographic characterization of the pediatric patellar instability and its anatomic risk factors. Knee MRI can inform the assessment of skeletal maturity and novel axial alignment measurements may enhance our identification of patients at increased risk of recurrent instability. Additional improvements have been made in the objective measurement and classification of trochlear dysplasia.

Summary

Knee MRI-based skeletal age assessments may obviate the need for hand bone age assessments in growing children with patellofemoral instability. Novel objective measures exist in the evaluation of pediatric patellar instability both in the assessment of axial alignment and trochlear dysplasia. Future work should focus on how these measures can aid in guiding surgical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fithian DC, Paxton EW, Stone ML, Silva P, Davis DK, Elias DA, et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med. 2004;32:1114–21. https://doi.org/10.1177/0363546503260788.

    Article  PubMed  Google Scholar 

  2. Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ. Incidence of first-time lateral patellar dislocation: a 21-year population-based study. Sports Health. 2018;10:146–51. https://doi.org/10.1177/1941738117725055.

    Article  PubMed  Google Scholar 

  3. Sillanpää P, Mattila VM, Iivonen T, Visuri T, Pihlajamäki H. Incidence and risk factors of acute traumatic primary patellar dislocation. Med Sci Sports Exerc. 2008;40:606–11. https://doi.org/10.1249/MSS.0b013e318160740f.

    Article  PubMed  Google Scholar 

  4. Nietosvaara Y, Aalto K, Kallio PE. Acute patellar dislocation in children: incidence and associated osteochondral fractures. J Pediatr Orthop. 1994;14:513–5 Available: https://www.ncbi.nlm.nih.gov/pubmed/8077438.

    Article  CAS  Google Scholar 

  5. Buchner M, Baudendistel B, Sabo D, Schmitt H. Acute traumatic primary patellar dislocation: long-term results comparing conservative and surgical treatment. Clin J Sport Med. 2005;15:62–6. https://doi.org/10.1097/01.jsm.0000157315.10756.14.

    Article  PubMed  Google Scholar 

  6. Kiviluoto O, Pasila M, Santavirta S, Sundholm A, Hämäläinen M. Recurrences after conservative treatment of acute dislocation of the patella. Ital J Sport Traumatol. 1986;3:159–62.

    Google Scholar 

  7. Gravesen KS, Kallemose T, Blønd L, Troelsen A, Barfod KW. High incidence of acute and recurrent patellar dislocations: a retrospective nationwide epidemiological study involving 24.154 primary dislocations. Knee Surg Sports Traumatol Arthrosc. 2018;26:1204–9. https://doi.org/10.1007/s00167-017-4594-7.

    Article  PubMed  Google Scholar 

  8. Atkin DM, Fithian DC, Marangi KS, Stone ML, Dobson BE, Mendelsohn C. Characteristics of patients with primary acute lateral patellar dislocation and their recovery within the first 6 months of injury. Am J Sports Med. 2000;28:472–9. https://doi.org/10.1177/03635465000280040601.

    Article  CAS  PubMed  Google Scholar 

  9. Hsiao M, Owens BD, Burks R, Sturdivant RX, Cameron KL. Incidence of acute traumatic patellar dislocation among active-duty United States military service members. Am J Sports Med. 2010;38:1997–2004. https://doi.org/10.1177/0363546510371423.

    Article  PubMed  Google Scholar 

  10. Waterman BR, Belmont PJ Jr, Owens BD. Patellar dislocation in the United States: role of sex, age, race, and athletic participation. J Knee Surg. 2012;25:51–7. https://doi.org/10.1055/s-0031-1286199.

    Article  PubMed  Google Scholar 

  11. Poorman MJ, Talwar D, Sanjuan J, Baldwin KD, Sutliff N, Franklin CC. Increasing hospital admissions for patellar instability: a national database study from 2004 to 2017. Phys Sportsmed. 2020;48:215–21. https://doi.org/10.1080/00913847.2019.1680088.

    Article  PubMed  Google Scholar 

  12. Arshi A, Cohen JR, Wang JC, Hame SL, McAllister DR, Jones KJ. Operative management of patellar instability in the United States: an evaluation of national practice patterns, surgical trends, and complications. Orthop J Sports Med. 2016;4:2325967116662873. https://doi.org/10.1177/2325967116662873.

    Article  PubMed  PubMed Central  Google Scholar 

  13. KH MF, Coene RP, Feldman L, Miller PE, Heyworth BE, Kramer DE, et al. Increased incidence of acute patellar dislocations and patellar instability surgical procedures across the United States in paediatric and adolescent patients. J Child Orthop. 2021;15:149–56. https://doi.org/10.1302/1863-2548.15.200225. Substantial retrospective review demonstrating that over a recent 10-year period, there has been a significant increase in the rate of acute patellar instability events and surgical interventions for patellofemoral instability in the pediatric population.

    Article  Google Scholar 

  14. Lewallen L, McIntosh A, Dahm D. First-time patellofemoral dislocation: risk factors for recurrent instability. J Knee Surg. 2015;28:303–9. https://doi.org/10.1055/s-0034-1398373.

    Article  PubMed  Google Scholar 

  15. Lewallen LW, McIntosh AL, Dahm DL. Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am J Sports Med. 2013;41:575–81. https://doi.org/10.1177/0363546512472873.

    Article  PubMed  Google Scholar 

  16. Jaquith BP, Parikh SN. Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. J Pediatr Orthop. 2017;37:484–90. https://doi.org/10.1097/BPO.0000000000000674.

    Article  PubMed  Google Scholar 

  17. Christensen TC, Sanders TL, Pareek A, Mohan R, Dahm DL, Krych AJ. Risk factors and time to recurrent ipsilateral and contralateral patellar dislocations. Am J Sports Med. 2017;45:2105–10. https://doi.org/10.1177/0363546517704178.

    Article  PubMed  Google Scholar 

  18. Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ. High rate of recurrent patellar dislocation in skeletally immature patients: a long-term population-based study. Knee Surg Sports Traumatol Arthrosc. 2018;26:1037–43. https://doi.org/10.1007/s00167-017-4505-y.

    Article  PubMed  Google Scholar 

  19. Stefancin JJ, Parker RD. First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res. 2007;455:93–101. https://doi.org/10.1097/BLO.0b013e31802eb40a.

    Article  PubMed  Google Scholar 

  20. Mäenpää H, Lehto MU, Patellar dislocation. The long-term results of nonoperative management in 100 patients. Am J Sports Med. 1997;25:213–7. https://doi.org/10.1177/036354659702500213.

    Article  PubMed  Google Scholar 

  21. Zhang K, Jiang H, Li J, Fu W. Comparison between surgical and nonsurgical treatment for primary patellar dislocations in adolescents: a systematic review and meta-analysis of comparative studies. Orthop J Sports Med. 2020;8:2325967120946446. https://doi.org/10.1177/2325967120946446.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist: Stanford University Press; 1959. Available: https://play.google.com/store/books/details?id=M49qAAAAMAAJ

    Book  Google Scholar 

  23. Pennock AT, Bomar JD. Bone age assessment utilizing knee MRI. Orthop J Sports Med. 2017;5:2325967117S00428. https://doi.org/10.1177/2325967117S00428.

    Article  PubMed Central  Google Scholar 

  24. Meza BC, LaValva SM, Aoyama JT, DeFrancesco CJ, Striano BM, Carey JL, et al. A novel shorthand approach to knee bone age using MRI: a validation and reliability study. Orthop J Sports Med. 2021;9:23259671211021582. https://doi.org/10.1177/23259671211021582. The shorthand method for estimating bone age with knee MRIs showed strong correlation with G&P hand bone age estimates, and showed strong intra- and integrated reliability regardless of training level.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Navali AM, Bahari LAS, Nazari B. A comparative assessment of alternatives to the full-leg radiograph for determining knee joint alignment. Sports Med Arthrosc Rehabil Ther Technol. 2012;4:40. https://doi.org/10.1186/1758-2555-4-40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Teitge R. Osteotomy in the treatment of patellofemoral instability. Tech Knee Surg. 2006;5:2–18. https://doi.org/10.1097/00132588-200603000-00003.

    Article  Google Scholar 

  27. Wilson PL, Black SR, Ellis HB, Podeszwa DA. Distal femoral valgus and recurrent traumatic patellar instability: is an isolated varus producing distal femoral osteotomy a treatment option? J Pediatr Orthop. 2018;38:e162–7. https://doi.org/10.1097/BPO.0000000000001128. Examines the use of radiographic parameters pre- and post-operatively in the determination of the effectiveness of distal femoral osteotomy as a treatment for pediatric patellofemoral instability.

    Article  PubMed  Google Scholar 

  28. Frings J, Krause M, Akoto R, Wohlmuth P, Frosch K-H. Combined distal femoral osteotomy (DFO) in genu valgum leads to reliable patellar stabilization and an improvement in knee function. Knee Surg Sports Traumatol Arthrosc. 2018;26:3572–81. https://doi.org/10.1007/s00167-018-5000-9.

    Article  PubMed  Google Scholar 

  29. Lin KM, Fabricant PD. CORR synthesis: can guided growth for angular deformity correction be applied to management of pediatric patellofemoral instability? Clin Orthop Relat Res. 2020;478:2231–8. https://doi.org/10.1097/CORR.0000000000001311. A comprehensive review of guided growth as a treatment for patellofemoral instability in the pediatric patient, including the use of radiographic measures as evidence of effective treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sabharwal S, Kumar A. Methods for assessing leg length discrepancy. Clin Orthop Relat Res. 2008;466:2910–22. https://doi.org/10.1007/s11999-008-0524-9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Palmer RC, Podeszwa DA, Wilson PL, Ellis HB. Coronal and transverse malalignment in pediatric patellofemoral instability. J Clin Med Res. 2021;10. https://doi.org/10.3390/jcm10143035.

  32. Unal M, Ercan S, Budeyri A, Toprak U, Şalkaci A. Anatomical axis validation of lower extremity for different deformities: A radiological study. SAGE Open Med. 2020;8:2050312120923822. https://doi.org/10.1177/2050312120923822.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sabharwal S, Zhao C, Edgar M. Lower limb alignment in children: reference values based on a full-length standing radiograph. J Pediatr Orthop. 2008;28:740–6. https://doi.org/10.1097/BPO.0b013e318186eb79.

    Article  PubMed  Google Scholar 

  34. Schmale GA, Bayomy AF, O’Brien AO, Bompadre V. The reliability of full-length lower limb radiographic alignment measurements in skeletally immature youth. J Child Orthop. 2019;13:67–72. https://doi.org/10.1302/1863-2548.13.180087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inan M, Chan G, Bowen JR. Correction of angular deformities of the knee by percutaneous hemiepiphysiodesis. Clin Orthop Relat Res. 2007;456:164–9. https://doi.org/10.1097/01.blo.0000246560.65714.c8.

    Article  PubMed  Google Scholar 

  36. Kearney SP, Mosca VS. Selective hemiepiphyseodesis for patellar instability with associated genu valgum. J Orthop. 2015;12:17–22. https://doi.org/10.1016/j.jor.2015.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26 Available: https://www.ncbi.nlm.nih.gov/pubmed/7584171.

    Article  CAS  Google Scholar 

  38. Lee TQ, Anzel SH, Bennett KA, Pang D, Kim WC. The influence of fixed rotational deformities of the femur on the patellofemoral contact pressures in human cadaver knees. Clin Orthop Relat Res. 1994:69–74. Available: https://www.ncbi.nlm.nih.gov/pubmed/8168325.

  39. Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc. 2018;26:8–15. https://doi.org/10.1097/JSA.0000000000000183.

    Article  PubMed  Google Scholar 

  40. Bruce WD, Stevens PM. Surgical correction of miserable malalignment syndrome. J Pediatr Orthop. 2004;24:392–6. https://doi.org/10.1097/00004694-200407000-00009.

    Article  PubMed  Google Scholar 

  41. Nelitz M. Femoral derotational osteotomies. Curr Rev Musculoskelet Med. 2018;11:272–9. https://doi.org/10.1007/s12178-018-9483-2.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Parikh S, Noyes FR. Patellofemoral disorders: role of computed tomography and magnetic resonance imaging in defining abnormal rotational lower limb alignment. Sports Health. 2011;3:158–69. https://doi.org/10.1177/1941738111399372.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stiebel M, Paley D. Derotational osteotomies of the femur and tibia for recurrent patellar instability. Oper Tech Sports Med. 2019;27:150691. https://doi.org/10.1016/j.otsm.2019.150691. Provides guidelines for the utilization of CT & EOS imaging as diagnostic modalities for femoral and tibial alignment and describes surgical technique for treatment of these rotational plane deformities.

    Article  Google Scholar 

  44. Mahboubi S, Horstmann H. Femoral torsion: CT measurement. Radiology. 1986;160:843–4. https://doi.org/10.1148/radiology.160.3.3737928.

    Article  CAS  PubMed  Google Scholar 

  45. Imhoff FB, Beitzel K, Zakko P, Obopilwe E, Voss A, Scheiderer B, et al. Derotational osteotomy of the distal femur for the treatment of patellofemoral instability simultaneously leads to the correction of frontal alignment: a laboratory cadaveric study. Orthop J Sports Med. 2018;6:2325967118775664. https://doi.org/10.1177/2325967118775664.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liodakis E, Doxastaki I, Chu K, Krettek C, Gaulke R, Citak M, et al. Reliability of the assessment of lower limb torsion using computed tomography: analysis of five different techniques. Skelet Radiol. 2012;41:305–11. https://doi.org/10.1007/s00256-011-1185-4.

    Article  Google Scholar 

  47. Nelitz M, Lippacher S, Reichel H, Dornacher D. Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2014;22:120–7. https://doi.org/10.1007/s00167-012-2321-y.

    Article  CAS  PubMed  Google Scholar 

  48. Tomczak RJ, Guenther KP, Rieber A, Mergo P, Ros PR, Brambs HJ. MR imaging measurement of the femoral antetorsional angle as a new technique: comparison with CT in children and adults. Am J Roentgenol. 1997;168:791–4. https://doi.org/10.2214/ajr.168.3.9057536.

    Article  CAS  Google Scholar 

  49. Tönnis D, Heinecke A. Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am. 1999;81:1747–70. https://doi.org/10.2106/00004623-199912000-00014.

    Article  PubMed  Google Scholar 

  50. Maruyama M, Feinberg JR, Capello WN, D’Antonio JA. The Frank Stinchfield Award: morphologic features of the acetabulum and femur: anteversion angle and implant positioning. Clin Orthop Relat Res. 2001:52–65. Available: https://www.ncbi.nlm.nih.gov/pubmed/11764371.

  51. Hartel MJ, Petersik A, Schmidt A, Kendoff D, Nüchtern J, Rueger JM, et al. Determination of femoral neck angle and torsion angle utilizing a novel three-dimensional modeling and analytical technology based on CT datasets. PLoS One. 2016;11:e0149480. https://doi.org/10.1371/journal.pone.0149480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fabry G, Cheng LX, Molenaers G. Normal and abnormal torsional development in children. Clin Orthop Relat Res. 1994:22–6. Available: https://www.ncbi.nlm.nih.gov/pubmed/8168306.

  53. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. [Patella infera. Apropos of 128 cases]. Rev Chir Orthop Reparatrice Appar Mot. 1982;68:317–25 Available: https://www.ncbi.nlm.nih.gov/pubmed/6216535.

    CAS  PubMed  Google Scholar 

  54. Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101:101–4. https://doi.org/10.1148/101.1.101.

    Article  CAS  PubMed  Google Scholar 

  55. Grelsamer RP, Meadows S. The modified Insall-Salvati ratio for assessment of patellar height. Clin Orthop Relat Res. 1992:170–6. Available: https://www.ncbi.nlm.nih.gov/pubmed/1516309.

  56. Koshino T, Sugimoto K. New measurement of patellar height in the knees of children using the epiphyseal line midpoint. J Pediatr Orthop. 1989;9:216–8 Available: https://www.ncbi.nlm.nih.gov/pubmed/2925858.

    CAS  PubMed  Google Scholar 

  57. Blackburne JS, Peel TE. A new method of measuring patellar height. J Bone Joint Surg Br. 1977;59:241–2. https://doi.org/10.1302/0301-620X.59B2.873986.

    Article  CAS  PubMed  Google Scholar 

  58. Thévenin-Lemoine C, Ferrand M, Courvoisier A, Damsin J-P, Ducou le Pointe H, Vialle R. Is the Caton-Deschamps index a valuable ratio to investigate patellar height in children? J Bone Joint Surg Am. 2011;93:e35. https://doi.org/10.2106/JBJS.J.00759.

    Article  PubMed  Google Scholar 

  59. Verhulst FV, van Sambeeck JDP, Olthuis GS, van der Ree J, Koëter S. Patellar height measurements: Insall-Salvati ratio is most reliable method. Knee Surg Sports Traumatol Arthrosc. 2020;28:869–75. https://doi.org/10.1007/s00167-019-05531-1.

    Article  PubMed  Google Scholar 

  60. Kurowecki D, Shergill R, Cunningham KM, Peterson DC, Takrouri HSR, Habib NO, et al. A comparison of sagittal MRI and lateral radiography in determining the Insall-Salvati ratio and diagnosing patella alta in the pediatric knee. Pediatr Radiol. 2021. https://doi.org/10.1007/s00247-021-05207-4. Found that there were not statistically significant differences between mean ISI values on MRI as compared to traditional radiographs. These findings provide evidence in favor of using ISI to measure patellar height on sagittal MRIs.

  61. Paul RW, Brutico JM, Wright ML, Erickson BJ, Tjoumakaris FP, Freedman KB, et al. Strong agreement between magnetic resonance imaging and radiographs for Caton–Deschamps index in patients with patellofemoral instability. Sports Med Arthrosc Rehabil Ther Technol. 2021;3:e1621–8. https://doi.org/10.1016/j.asmr.2021.07.017.

    Article  Google Scholar 

  62. Biedert RM, Albrecht S. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc. 2006;14:707–12. https://doi.org/10.1007/s00167-005-0015-4.

    Article  PubMed  Google Scholar 

  63. van Duijvenbode DC, van Dam MJJ, de Beer L, Stavenuiter MHJ, Hofstee DJ, van Dijke CF, et al. The reliability of the patellotrochlear index on magnetic resonance imaging for measuring patellofemoral height. Knee. 2021;32:56–63. https://doi.org/10.1016/j.knee.2021.07.009. Compares the reliability of PTI and correlates these measures to those of the modified Insall Salvati ratio (MIS). There was excellent intra- and interrater reliability using PTI, but weak correlation to MIS measures.

    Article  PubMed  Google Scholar 

  64. Barnett AJ, Prentice M, Mandalia V, Wakeley CJ, Eldridge JDJ. The patellotrochlear index: a more clinically relevant measurement of patella height? Orthopaedic Proceedings. The British Editorial Society of Bone & Joint Surgery; 2011. pp. 1–1. Available: https://online.boneandjoint.org.uk/doi/abs/10.1302/0301-620X.93BSUPP_I.0930001.

  65. Leite CBG, Santos TP, Giglio PN, Pécora JR, Camanho GL, Gobbi RG. Tibial tubercle osteotomy with distalization is a safe and effective procedure for patients with patella alta and patellar instability. Orthop J Sports Med. 2021;9:2325967120975101. https://doi.org/10.1177/2325967120975101.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Patel RM, Gombosh M, Polster J, Andrish J. Patellar Tendon imbrication is a safe and efficacious technique to shorten the patellar tendon in patients with patella alta. Orthop J Sports Med. 2020;8:2325967120959318. https://doi.org/10.1177/2325967120959318.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yalcin S, Patel RM, Andrish J, Farrow LD. Patellar tendon imbrication. Video J Sports Med. 2021;1:26350254211006699. https://doi.org/10.1177/26350254211006699.

    Article  Google Scholar 

  68. Kakazu R, Luczak SB, Grimm NL, Fitzsimmons KP, Andrish JT, Farrow LD, et al. Patellar tendon imbrication for patella alta. Arthrosc Tech. 2022;11:e7–e12. https://doi.org/10.1016/j.eats.2021.08.029.

    Article  PubMed  Google Scholar 

  69. Fabricant PD, Ladenhauf HN, Salvati EA, Green DW. Medial patellofemoral ligament (MPFL) reconstruction improves radiographic measures of patella alta in children. Knee. 2014;21:1180–4. https://doi.org/10.1016/j.knee.2014.07.023.

    Article  PubMed  Google Scholar 

  70. Lykissas MG, Li T, Eismann EA, Parikh SN. Does medial patellofemoral ligament reconstruction decrease patellar height? A preliminary report. J Pediatr Orthop. 2014;34:78–85. https://doi.org/10.1097/BPO.0b013e3182a12102.

    Article  PubMed  Google Scholar 

  71. Elias JJ, Soehnlen NT, Guseila LM, Cosgarea AJ. Dynamic tracking influenced by anatomy in patellar instability. Knee. 2016;23:450–5. https://doi.org/10.1016/j.knee.2016.01.021.

    Article  PubMed  Google Scholar 

  72. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CWA, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13:26–31. https://doi.org/10.1016/j.knee.2005.06.003.

    Article  PubMed  Google Scholar 

  73. Heidenreich MJ, Sanders TL, Hevesi M, Johnson NR, Wu IT, Camp CL, et al. Individualizing the tibial tubercle to trochlear groove distance to patient specific anatomy improves sensitivity for recurrent instability. Knee Surg Sports Traumatol Arthrosc. 2018;26:2858–64. https://doi.org/10.1007/s00167-017-4752-y.

    Article  PubMed  Google Scholar 

  74. Hevesi M, Heidenreich MJ, Camp CL, Hewett TE, Stuart MJ, Dahm DL, et al. The recurrent instability of the patella score: a statistically based model for prediction of long-term recurrence risk after first-time Dislocation. Arthroscopy. 2019;35:537–43. https://doi.org/10.1016/j.arthro.2018.09.017.

    Article  PubMed  Google Scholar 

  75. Yeoh CSN, Lam KY. Tibial tubercle to trochlear groove distance and index in children with one-time versus recurrent patellar dislocation: a magnetic resonance imaging study. J Orthop Surg. 2016;24:253–7. https://doi.org/10.1177/1602400226.

    Article  CAS  Google Scholar 

  76. Zhang G-Y, Ding H-Y, Li E-M, Zheng L, Bai Z-W, Shi H, et al. Incidence of second-time lateral patellar dislocation is associated with anatomic factors, age and injury patterns of medial patellofemoral ligament in first-time lateral patellar dislocation: a prospective magnetic resonance imaging study with 5-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2019;27:197–205. https://doi.org/10.1007/s00167-018-5062-8.

    Article  PubMed  Google Scholar 

  77. Goutallier D, Bernageau J, Lecudonnec B. The measurement of the tibial tuberosity. [Patella groove distanced technique and results (author’s transl)]. Rev Chir Orthop Reparatrice Appar Mot. 1978;64:423–8 Available: https://www.ncbi.nlm.nih.gov/pubmed/152950.

  78. Balcarek P, Jung K, Frosch K-H, Stürmer KM. Value of the tibial tuberosity-trochlear groove distance in patellar instability in the young athlete. Am J Sports Med. 2011;39:1756–61. https://doi.org/10.1177/0363546511404883.

    Article  PubMed  Google Scholar 

  79. Dickens AJ, Morrell NT, Doering A, Tandberg D, Treme G. Tibial tubercle-trochlear groove distance: defining normal in a pediatric population. J Bone Joint Surg Am. 2014;96:318–24. https://doi.org/10.2106/JBJS.M.00688.

    Article  PubMed  Google Scholar 

  80. Dai Z-Z, Sha L, Zhang Z-M, Liang Z-P, Li H, Li H. Comparing the tibial tuberosity–trochlear groove distance between ct and mri in skeletally immature patients with and without patellar instability. Orthop J Sports Med. 2021;9:2325967120973665. https://doi.org/10.1177/2325967120973665.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mistovich RJ, Urwin JW, Fabricant PD, Lawrence JTR. Patellar tendon-lateral trochlear ridge distance: a novel measurement of patellofemoral instability. Am J Sports Med. 2018;46:3400–6. https://doi.org/10.1177/0363546518809982. PT-LTR was found to be reliable and discriminative for patellofemoral instability and showed similar sensitivity but higher specificity for this condition than TT-TG.

    Article  PubMed  Google Scholar 

  82. Weltsch D, Chan CT, Mistovich RJ, Urwin JW, Gajewski CR, Fabricant PD, et al. Predicting risk of recurrent patellofemoral instability with measurements of extensor mechanism containment. Am J Sports Med. 2021;49:706–12. https://doi.org/10.1177/0363546520987007. Assessed the tibial tubercle to lateral trochlear ridge (TT-LTR) distance and found that the localization of the tibial tubercle outside of the lateral trochlear ridge was the axial MRI measure most predictive of recurrent patellar instability.

    Article  PubMed  Google Scholar 

  83. Kita K, Tanaka Y, Toritsuka Y, Amano H, Uchida R, Takao R, et al. Factors affecting the outcomes of double-bundle medial patellofemoral ligament reconstruction for recurrent patellar dislocations evaluated by multivariate analysis. Am J Sports Med. 2015;43:2988–96. https://doi.org/10.1177/0363546515606102.

    Article  PubMed  Google Scholar 

  84. Fulkerson JP. Anteromedialization of the tibial tuberosity for patellofemoral malalignment. Clin Orthop Relat Res 1983; 176–181. Available: https://www.ncbi.nlm.nih.gov/pubmed/6861394.

  85. Ferrari MB, Sanchez G, Kennedy NI, Sanchez A, Schantz K, Provencher MT. Osteotomy of the tibial tubercle for anteromedialization. Arthrosc Tech. 2017;6:e1341–6. https://doi.org/10.1016/j.eats.2017.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Trivellas M, Arshi A, Beck JJ. Roux-Goldthwait and medial patellofemoral ligament reconstruction for patella realignment in the skeletally immature patient. Arthrosc Tech. 2019;8:e1479–83. https://doi.org/10.1016/j.eats.2019.07.027.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Felli L, Capello AG, Lovisolo S, Chiarlone F, Alessio-Mazzola M. Goldthwait technique for patellar instability: surgery of the past or here to stay procedure? A systematic review of the literature. Musculoskelet Surg. 2019;103:107–13. https://doi.org/10.1007/s12306-018-0566-4.

    Article  CAS  PubMed  Google Scholar 

  88. Longo UG, Rizzello G, Ciuffreda M, Loppini M, Baldari A, Maffulli N, et al. Elmslie-Trillat, Maquet, Fulkerson, Roux Goldthwait, and other distal realignment procedures for the management of patellar dislocation: systematic review and quantitative synthesis of the literature. Arthroscopy. 2016;32:929–43. https://doi.org/10.1016/j.arthro.2015.10.019.

    Article  PubMed  Google Scholar 

  89. Kazley JM, Banerjee S. Classifications in Brief: The Dejour classification of trochlear dysplasia. Clin Orthop Relat Res. 2019;477:2380–6. https://doi.org/10.1097/CORR.0000000000000886.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Askenberger M, Janarv P-M, Finnbogason T, Arendt EA. Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med. 2017;45:50–8. https://doi.org/10.1177/0363546516663498.

    Article  PubMed  Google Scholar 

  91. Steensen RN, Bentley JC, Trinh TQ, Backes JR, Wiltfong RE. The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med. 2015;43:921–7. https://doi.org/10.1177/0363546514563904.

    Article  PubMed  Google Scholar 

  92. Glard Y, Jouve J-L, Garron E, Adalian P, Tardieu C, Bollini G. Anatomic study of femoral patellar groove in fetus. J Pediatr Orthop. 2005;25:305–8 Available: https://www.ncbi.nlm.nih.gov/pubmed/15832143.

    Article  Google Scholar 

  93. Bollier M, Fulkerson JP. The role of trochlear dysplasia in patellofemoral instability. J Am Acad Orthop Surg. 2011;19:8–16. https://doi.org/10.5435/00124635-201101000-00002.

    Article  PubMed  Google Scholar 

  94. Stepanovich M, Bomar JD, Pennock AT. Are the current classifications and radiographic measurements for trochlear dysplasia appropriate in the skeletally immature patient? Orthop J Sports Med. 2016;4:2325967116669490. https://doi.org/10.1177/2325967116669490. Highlights that pediatric-modified LTI, TDI and MCTO measures demonstrate better reliability and improved detection of patients with patellar instability when compared to radiographic or MRI-based Dejour classification.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Koëter S, Bongers EMHF, de Rooij J, van Kampen A. Minimal rotation aberrations cause radiographic misdiagnosis of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2006;14:713–7. https://doi.org/10.1007/s00167-005-0031-4.

    Article  PubMed  Google Scholar 

  96. Sharma N, Brown A, Bouras T, Kuiper JH, Eldridge J, Barnett A. The Oswestry-Bristol classification. Bone Joint J. 2020;102-B:102–7. https://doi.org/10.1302/0301-620X.102B1.BJJ-2019-0366.R3. Compares Oswestry-Bristol Classification (OBC) to Dejour classification and shows greater intra- and interobserver agreement with OBC over Dejour.

    Article  PubMed  Google Scholar 

  97. Sharma N, Rehmatullah N, Kuiper JH, Gallacher P, Barnett AJ. Clinical validation of the Oswestry-Bristol classification as part of a decision algorithm for trochlear dysplasia surgery. Bone Joint J. 2021;103-B:1586–94. https://doi.org/10.1302/0301-620X.103B10.BJJ-2020-1984.R1.

    Article  PubMed  Google Scholar 

  98. Konrads C, Gonser C, Ahmad SS. Reliability of the Oswestry-Bristol classification for trochlear dysplasia: expanded characteristics. Bone Jt Open. 2020;1:355–8. https://doi.org/10.1302/2633-1462.17.BJO-2020-0048.R1.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology. 2000;216:582–5. https://doi.org/10.1148/radiology.216.2.r00au07582.

    Article  CAS  PubMed  Google Scholar 

  100. Joseph SM, Cheng C, Solomito MJ, Pace JL. Lateral trochlear inclination angle: measurement via a 2-image technique to reliably characterize and quantify trochlear dysplasia. Orthop J Sports Med. 2020;8:2325967120958415. https://doi.org/10.1177/2325967120958415.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pfirrmann CW, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216:858–64. https://doi.org/10.1148/radiology.216.3.r00se38858.

    Article  CAS  PubMed  Google Scholar 

  102. Nietosvaara Y, Aalto K. The cartilaginous femoral sulcus in children with patellar dislocation: an ultrasonographic study. J Pediatr Orthop. 1997;17:50–3. https://doi.org/10.1097/00004694-199701000-00012.

    Article  CAS  PubMed  Google Scholar 

  103. Düppe K, Gustavsson N, Edmonds EW. Developmental morphology in childhood patellar instability: age-dependent differences on magnetic resonance imaging. J Pediatr Orthop. 2016;36:870–6. https://doi.org/10.1097/BPO.0000000000000556.

    Article  PubMed  Google Scholar 

  104. Trivellas M, Kelley B, West N, Jackson NJ, Beck JJ. Trochlear morphology development: study of normal pediatric knee MRIs. J Pediatr Orthop. 2021;41:77–82. https://doi.org/10.1097/BPO.0000000000001697.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Arendt EA, England K, Agel J, Tompkins MA. An analysis of knee anatomic imaging factors associated with primary lateral patellar dislocations. Knee Surg Sports Traumatol Arthrosc. 2017;25:3099–107. https://doi.org/10.1007/s00167-016-4117-y.

    Article  PubMed  Google Scholar 

  106. Pagliazzi G, Ellermann JM, Carlson CS, Shea KG, Arendt EA. Trochlear development in children from 1 month to 10 years of age: a descriptive study utilizing analysis by magnetic resonance imaging. Orthop J Sports Med. 2021;9:23259671211028269. https://doi.org/10.1177/23259671211028269.

    Article  PubMed  PubMed Central  Google Scholar 

  107. van Huyssteen AL, Hendrix MRG, Barnett AJ, Wakeley CJ, Eldridge JDJ. Cartilage-bone mismatch in the dysplastic trochlea. An MRI study. J Bone Joint Surg Br. 2006;88:688–91. https://doi.org/10.1302/0301-620X.88B5.16866.

    Article  PubMed  Google Scholar 

  108. Camathias C, Speth BM, Rutz E, Schlemmer T, Papp K, Vavken P, et al. Solitary trochleoplasty for treatment of recurrent patellar dislocation. JBJS Essent Surg Tech. 2018;8:e11. https://doi.org/10.2106/JBJS.ST.17.00039.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dejour D, Saggin P. The sulcus deepening trochleoplasty-the Lyon’s procedure. Int Orthop. 2010;34:311–6. https://doi.org/10.1007/s00264-009-0933-8.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Vogel LA, Pace JL. Trochleoplasty, medial patellofemoral ligament reconstruction, and open lateral lengthening for patellar instability in the setting of high-grade trochlear dysplasia. Arthrosc Tech. 2019;8:e961–7. https://doi.org/10.1016/j.eats.2019.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fulkerson JP. Trochleoplasty has its place for select patients with complex patella instability. [cited 27 Feb 2021]. Available: https://www.healio.com/news/orthopedics/20190412/trochleoplasty-has-its-place-for-select-patients-with-complex-patella-instability.

  112. Rush J, Diduch D. When is trochleoplasty a rational addition? Sports Med Arthrosc. 2019;27:161–8. https://doi.org/10.1097/JSA.0000000000000254.

    Article  PubMed  Google Scholar 

  113. Smith JM, Rush JK, Carstensen SE, Diduch DR. Trochleoplasty: indications and results. In: Dejour D, Zaffagnini S, Arendt EA, Sillanpää P, Dirisamer F, editors. Patellofemoral pain, instability, and arthritis: clinical presentation, imaging, and treatment. Berlin: Springer Berlin Heidelberg; 2020. p. 303–12. https://doi.org/10.1007/978-3-662-61097-8_25.

    Chapter  Google Scholar 

  114. Blond L. Is there any indication for trochleoplasty? In: OrthopedicsToday [Internet]. [cited 27 Feb 2021]. Available: https://www.healio.com/news/orthopedics/20200408/is-there-any-indication-for-trochleoplasty.

  115. Nolan JE 3rd, Schottel PC, Endres NK. Trochleoplasty: indications and technique. Curr Rev Musculoskelet Med. 2018. https://doi.org/10.1007/s12178-018-9478-z.

  116. Levy BJ, Tanaka MJ, Fulkerson JP. Current concepts regarding patellofemoral trochlear dysplasia. Am J Sports Med. 2021;49:1642–50. https://doi.org/10.1177/0363546520958423.

    Article  PubMed  Google Scholar 

  117. Camathias C, Studer K, Kiapour A, Rutz E, Vavken P. Trochleoplasty as a solitary treatment for recurrent patellar dislocation results in good clinical outcome in adolescents. Am J Sports Med. 2016;44:2855–63. https://doi.org/10.1177/0363546516652894.

    Article  PubMed  Google Scholar 

  118. Nelitz M, Dreyhaupt J, Williams SRM. No growth disturbance after trochleoplasty for recurrent patellar dislocation in adolescents with open growth plates. Am J Sports Med. 2018;46:3209–16. https://doi.org/10.1177/0363546518794671.

    Article  PubMed  Google Scholar 

  119. Pesenti S, Blondel B, Armaganian G, Parratte S, Bollini G, Launay F, et al. The lateral wedge augmentation trochleoplasty in a pediatric population: a 5-year follow-up study. J Pediatr Orthop B. 2017;26:458–64. https://doi.org/10.1097/BPB.0000000000000395.

    Article  PubMed  Google Scholar 

  120. Metcalfe AJ, Clark DA, Kemp MA, Eldridge JD. Trochleoplasty with a flexible osteochondral flap: results from an 11-year series of 214 cases. Bone Joint J. 2017;99-B:344–50. https://doi.org/10.1302/0301-620X.99B3.37884.

    Article  CAS  PubMed  Google Scholar 

  121. Rouanet T, Gougeon F, Fayard JM, Rémy F, Migaud H, Pasquier G. Sulcus deepening trochleoplasty for patellofemoral instability: a series of 34 cases after 15 years postoperative follow-up. Orthop Traumatol Surg Res. 2015;101:443–7. https://doi.org/10.1016/j.otsr.2015.01.017.

    Article  CAS  PubMed  Google Scholar 

  122. van Sambeeck JDP, van de Groes SAW, Verdonschot N, Hannink G. Trochleoplasty procedures show complication rates similar to other patellar-stabilizing procedures. Knee Surg Sports Traumatol Arthrosc. 2018;26:2841–57. https://doi.org/10.1007/s00167-017-4766-5.

    Article  PubMed  Google Scholar 

  123. Leclerc J-T, Dartus J, Labreuche J, Martinot P, Galmiche R, Migaud H, et al. Complications and outcomes of trochleoplasty for patellofemoral instability: a systematic review and meta-analysis of 1000 trochleoplasties. Orthop Traumatol Surg Res. 2021;107:103035. https://doi.org/10.1016/j.otsr.2021.103035.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This manuscript has not been published previously. All authors made significant contributions to multiple aspects of the study as described in the ICMJE authorship criteria recommendations, detailed here:

• Kevin J. Orellana: substantial contributions to data acquisition, data interpretation, manuscript drafting, critical revision, and final approval of the version to be published.

• Morgan G. Batley: substantial contributions to data acquisition, data interpretation, manuscript drafting, critical revision, and final approval of the version to be published.

• J. Todd R. Lawrence: substantial contributions to concept and design, data interpretation, critical revision, and final approval of the version to be published.

• Jie C. Nguyen: substantial contributions to concept and design, data interpretation, critical revision, and final approval of the version to be published.

• Brendan A. Williams: substantial contributions to conception and design, data acquisition, data interpretation, manuscript drafting, critical revision, and final approval of the version to be published.

Corresponding author

Correspondence to Brendan A. Williams.

Ethics declarations

Conflict of Interest

Kevin J. Orellana, Morgan G. Batley, Jie C. Nguyen, and Brendan A. Williams declare that they have no conflict of interest. J. Todd R. Lawrence is a board or committee member of the American Academy of Pediatrics and has received IP royalties from Sawbones/Pacific Research Laboratories.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Orthopedics

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orellana, K.J., Batley, M.G., Lawrence, J.T.R. et al. Radiographic Evaluation of Pediatric Patients with Patellofemoral Instability. Curr Rev Musculoskelet Med 15, 411–426 (2022). https://doi.org/10.1007/s12178-022-09780-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-022-09780-5

Keywords

Navigation