Skip to main content
Log in

Applications of Artificial Intelligence in Echocardiography

  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Echocardiography is an integral component in the diagnosis and management of heart disease. This review focuses on the applications of artificial intelligence in echocardiography.

Recent Findings

Artificial intelligence (AI) and machine learning (ML) applications continue to prove as useful adjuncts in clinical echocardiography. AI has proven useful in echocardiographic assessment of chamber size and function and Doppler measurement.

Similarly, AI applications have demonstrated benefit in the echocardiographic diagnosis of valvular disease and cardiomyopathies as well as predicting outcomes and prognostication. Additionally, recent studies have shown the value of AI in acquisition of limited echocardiographic views with the ability to assist in the training of novices to acquire these images quickly.

Summary

AI is a valuable adjunct in clinical echocardiography with the potential for improving diagnostic efficiency and accuracy, reducing costs, and personalizing cardiac care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Nedadur et al. Artificial intelligence for the echocardiographic assessment of valvular heart disease. Heart. 2022 Feb 10:heartjnl-2021–319,725.

Fig. 4

Similar content being viewed by others

References

  1. Szolovits P, Patil RS, Schwartz WB. Artificial intelligence in medical diagnosis. Ann Intern Med. 1988;108:80–7.

    Article  CAS  PubMed  Google Scholar 

  2. Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73:1317–35.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kusunose K, Haga A, Abe T, Sata M. Utilization of artificial intelligence in echocardiography. Circ J. 2019;83:1623–9.

    Article  PubMed  Google Scholar 

  4. Deo RC. Machine learning in medicine. Circ. 2015;132:1920–30.

    Article  Google Scholar 

  5. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice. Circ. 2018;138:1623–35.

    Article  Google Scholar 

  7. Narang A, Bae R, Hong H, et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 2021;6:624–32.

    Article  PubMed  Google Scholar 

  8. Abdi AH, Luong C, Tsang T, et al. Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans Med Imaging. 2017;36:1221–30.

    Article  PubMed  Google Scholar 

  9. Khamis H, Zurakhov G, Azar V, Raz A, Friedman Z, Adam D. Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Med Image Anal. 2017;36:15–21.

    Article  PubMed  Google Scholar 

  10. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018;1:6. https://doi.org/10.1038/s41746-017-0013-1.

  11. Kusunose K, Haga A, Inoue M, Fukuda D, Yamada H, Sata M. Clinically feasible and accurate view classification of echocardiographic images using deep learning. biomolecules. 2020;10(5):665. https://doi.org/10.3390/biom10050665.

  12. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1–39):e14.

    Google Scholar 

  13. Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging. 2016;9:769–82.

    Article  PubMed  Google Scholar 

  14. Medvedofsky D, Mor-Avi V, Amzulescu M, et al. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur Heart J Cardiovasc Imaging. 2018;19:47–58.

    Article  PubMed  Google Scholar 

  15. Tamborini G, Piazzese C, Lang RM, et al. Feasibility and accuracy of automated software for transthoracic three-dimensional left ventricular volume and function analysis: comparisons with two-dimensional echocardiography, three-dimensional transthoracic manual method, and cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2017;30:1049–58.

    Article  PubMed  Google Scholar 

  16. Levy F, Dan Schouver E, Iacuzio L, et al. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: comparison with 3 Tesla cardiac magnetic resonance. Arch Cardiovasc Dis. 2017;110:580–9.

    Article  PubMed  Google Scholar 

  17. Sun L, Feng H, Ni L, Wang H, Gao D. Realization of fully automated quantification of left ventricular volumes and systolic function using transthoracic 3D echocardiography. Cardiovasc Ultrasound. 2018;16:2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Medvedofsky D, Mor-Avi V, Byku I, et al. Three-dimensional echocardiographic automated quantification of left heart chamber volumes using an adaptive analytics algorithm: feasibility and impact of image quality in nonselected patients. J Am Soc Echocardiogr. 2017;30:879–85.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Narang A, Mor-Avi V, Prado A, et al. Machine learning based automated dynamic quantification of left heart chamber volumes. Eur Heart J Cardiovasc Imaging. 2019;20:541–9.

    Article  PubMed  Google Scholar 

  20. D’Elia N, Appadurai V, Mallouhi M, Ng J, Marwick T, Wahi S. Comparison of 3D echocardiographic-derived indices using fully automatic left ventricular endocardial tracing (heart model) and semiautomatic tracing (3DQ-ADV). Echocardiography. 2019;36:2057–63.

    Article  PubMed  Google Scholar 

  21. Volpato V, Mor-Avi V, Narang A, et al. Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass. Echocardiogr. 2019;36:312–9.

    Article  Google Scholar 

  22. Barbieri A, Bursi F, Camaioni G, Maisano A, Imberti JF, Albini A, De Mitri G, Mantovani F, Boriani G. Echocardiographic left ventricular mass assessment: correlation between 2D-derived linear dimensions and 3-Dimensional automated, machine learning-based methods in unselected patients. J Clin Med. 2021;10(6):1279. https://doi.org/10.3390/jcm10061279.

  23. Qazi M, Fung G, Krishnan S, Bi J, Rao RB, Katz AS. Automated heart abnormality detection using sparse linear classifiers. IEEE Eng Med Biol Mag. 2007;26:56–63.

    Article  PubMed  Google Scholar 

  24. Huang MS, Wang CS, Chiang JH, Liu PY, Tsai WC. Automated recognition of regional wall motion abnormalities through deep neural network interpretation of transthoracic echocardiography. Circ. 2020;142:1510–20.

    Article  Google Scholar 

  25. Lin X, Yang F, Chen Y, et al. Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction. Front Cardiovasc Med. 2022;9:903660.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gosling AF, Thalappillil R, Ortoleva J, Datta P, Cobey FC. Automated spectral Doppler profile tracing. J Cardiothorac Vasc Anesth. 2020;34:72–6.

    Article  PubMed  Google Scholar 

  27. Nolan MT, Thavendiranathan P. Automated quantification in echocardiography. JACC Cardiovasc Imaging. 2019;12:1073–92.

    Article  PubMed  Google Scholar 

  28. Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput Biol Med. 2016;73:47–55.

    Article  PubMed  Google Scholar 

  29. Martins J, Nascimento ER, Nascimento BR, et al. Towards automatic diagnosis of rheumatic heart disease on echocardiographic exams through video-based deep learning. J Am Med Inform Assoc. 2021;28:1834–42.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vafaeezadeh M, Behnam H, Hosseinsabet A, Gifani P. A deep learning approach for the automatic recognition of prosthetic mitral valve in echocardiographic images. Comput Biol Med. 2021;133:104388.

    Article  PubMed  Google Scholar 

  31. Aquila I, Fernandez-Golfin C, Rincon LM, et al. Fully automated software for mitral annulus evaluation in chronic mitral regurgitation by 3-dimensional transesophageal echocardiography. Med. 2016;95:e5387.

    Article  Google Scholar 

  32. Calleja A, Thavendiranathan P, Ionasec RI, et al. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications. Circ Cardiovasc Imaging. 2013;6:99–108.

    Article  PubMed  Google Scholar 

  33. Garcia-Martin A, Lazaro-Rivera C, Fernandez-Golfin C, et al. Accuracy and reproducibility of novel echocardiographic three-dimensional automated software for the assessment of the aortic root in candidates for thanscatheter aortic valve replacement. Eur Heart J Cardiovasc Imaging. 2016;17:772–8.

    Article  PubMed  Google Scholar 

  34. Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68:2287–95.

    Article  PubMed  Google Scholar 

  35. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, Gall W, Dudley JT. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9(6):e004330. https://doi.org/10.1161/CIRCIMAGING.115.004330.

  36. Berchialla P, Foltran F, Bigi R, Gregori D. Integrating stress-related ventricular functional and angiographic data in preventive cardiology: a unified approach implementing a Bayesian network. J Eval Clin Pract. 2012;18:637–43.

    Article  PubMed  Google Scholar 

  37. Ernande L, Audureau E, Jellis CL, et al. Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J Am Coll Cardiol. 2017;70:1704–16.

    Article  PubMed  Google Scholar 

  38. Agasthi P, Buras MR, Smith SD, et al. Machine learning helps predict long-term mortality and graft failure in patients undergoing heart transplant. Gen Thorac Cardiovasc Surg. 2020;68:1369–76.

    Article  PubMed  Google Scholar 

  39. Nabi W, Bansal A, Xu B. Applications of artificial intelligence and machine learning approaches in echocardiography. Echocardiogr. 2021;38:982–92.

    Article  Google Scholar 

  40. Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019;40:2058–73.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Olson RS, Cava W, Mustahsan Z, Varik A, Moore JH. Data-driven advice for applying machine learning to bioinformatics problems. Pac Symp Biocomput. 2018;23:192–203.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

AN is the recipient of funding from the Brenda and Lance Feis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Narang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slostad, B., Karnik, A., Appadurai, V. et al. Applications of Artificial Intelligence in Echocardiography. Curr Cardiovasc Risk Rep 17, 123–132 (2023). https://doi.org/10.1007/s12170-023-00721-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-023-00721-6

Keywords

Navigation