Skip to main content

Advertisement

Log in

The Role of Artificial Intelligence in Echocardiography: A Clinical Update

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

In echocardiography, there has been robust development of artificial intelligence (AI) tools for image recognition, automated measurements, image segmentation, and patient prognostication that has created a monumental shift in the study of AI and machine learning models. However, integrating these measurements into complex disease recognition and therapeutic interventions remains challenging. While the tools have been developed, there is a lack of evidence regarding implementing heterogeneous systems for guiding clinical decision-making and therapeutic action.

Recent findings

Newer AI modalities have shown concrete positive data in terms of user-guided image acquisition and processing, precise determination of both basic and advanced quantitative echocardiographic features, and the potential to construct predictive models, all with the possibility of seamless integration into clinical decision support systems.

Summary

AI in echocardiography is a powerful and ever-growing tool with the potential for revolutionary effects on the practice of cardiology. In this review article, we explore the growth of AI and its applications in echocardiography, along with clinical implications and the associated regulatory, legal, and ethical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rearick C, Castaneda J, Weber J, Edstrom E, Cassidy K, Arora V, Ward RP. An electronic health record intervention to increase utilization of limited transthoracic echocardiography. J Am Soc Echocardiogr. 2021;34(5):551–2. https://doi.org/10.1016/j.echo.2020.12.023. Epub 2021 Jan 4 PMID: 33412250.

    Article  PubMed  Google Scholar 

  2. Seetharam K, Raina S, Sengupta PP. The role of artificial intelligence in echocardiography. Curr Cardiol Rep. 2020;22:99. https://doi.org/10.1007/s11886-020-01329-7.

    Article  PubMed  Google Scholar 

  3. Waisberg E, Ong J, Masalkhi M, Kamran SA, Zaman N, Sarker P, Lee AG, Tavakkoli A. GPT-4: a new era of artificial intelligence in medicine. Ir J Med Sci. 2023 Apr 19. https://doi.org/10.1007/s11845-023-03377-8. Epub ahead of print. PMID: 37076707.

  4. Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, Marwick TH. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(11):1317–35. https://doi.org/10.1016/j.jacc.2018.12.054. PMID: 30898208; PMCID: PMC6474254 .

    Article  PubMed  PubMed Central  Google Scholar 

  5. Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14. https://doi.org/10.1167/tvst.9.2.14. PMID: 32704420; PMCID: PMC7347027.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN Comput Sci. 2021;2(3):160. https://doi.org/10.1007/s42979-021-00592-x. Epub 2021 Mar 22. PMID: 33778771; PMCID: PMC7983091.

  7. Jovel J, Greiner R. An introduction to machine learning approaches for biomedical research. Front Med (Lausanne). 2021;16(8):771607. https://doi.org/10.3389/fmed.2021.771607. PMID: 34977072; PMCID: PMC8716730.

    Article  Google Scholar 

  8. Shao F, Shen Z. How can artificial neural networks approximate the brain? Front Psychol. 2023;9(13):970214. https://doi.org/10.3389/fpsyg.2022.970214. PMID: 36698593; PMCID: PMC9868316.

    Article  Google Scholar 

  9. Krittanawong C, Omar AMS, Narula S, Sengupta PP, Glicksberg BS, Narula J, Argulian E. Deep learning for echocardiography: introduction for clinicians and future vision: state-of-the-art review. Life (Basel). 2023;13(4):1029. https://doi.org/10.3390/life13041029. PMID: 37109558; PMCID: PMC10145844.

    Article  PubMed  Google Scholar 

  10. Skandarani Y, Lalande A, Afilalo J, Jodoin PM. Generative Adversarial Networks in Cardiology. Can J Cardiol. 2022;38(2):196–203. ISSN 0828–282X. https://doi.org/10.1016/j.cjca.2021.11.003.

  11. Kagiyama N, Tokodi M, Sengupta PP. Machine learning in cardiovascular imaging. Heart Fail Clin. 2022;18(2):245–258, ISSN 1551–7136. ISBN 9780323920193. https://doi.org/10.1016/j.hfc.2021.11.003.

  12. Partho P, Sengupta Y, Chandrashekhar, Imaging With Deep Learning: Sharpening the Cutting Edge, JACC: Cardiovascular Imaging,  2022;15(3):547–549. ISSN 1936-878X. https://doi.org/10.1016/j.jcmg.2022.02.001.

  13. Manaa A, Brahimi F, Chouiref Z, Kessouri M, Amad M. Cardiovascular diseases prediction based on dense-DNN and feature selection techniques. In: Chikhi, S., Diaz-Descalzo, G., Amine, A., Chaoui, A., Saidouni, D.E., Kholladi, M.K. (eds) Modelling and implementation of complex systems. MISC 2022. Lect Notes Netw Syst. 2023;593. Springer, Cham. https://doi.org/10.1007/978-3-031-18516-8_24.

  14. Zhang X. Application of artificial intelligence recognition technology in digital image processing. Wirel Commun Mob Comput. 2022:1-10. Article ID 7442639. https://doi.org/10.1155/2022/7442639.

  15. Karužas A, Balčiūnas J, Fukson M, Verikas D, Matuliauskas D, Platūkis T, Vaičiulienė D, Jurgaitytė J, Kupstytė-Krištaponė N, Dirsienė R, Jaruševičius G, Šakalytė G, Plisienė J, Lesauskaitė V. Artificial intelligence for automated evaluation of aortic measurements in 2D echocardiography: feasibility, accuracy, and reproducibility. Echocardiography. 2022;39(11):1439–45. https://doi.org/10.1111/echo.15475. Epub 2022 Oct 20 PMID: 36266744.

    Article  PubMed  Google Scholar 

  16. Center for Devices and Radiological Health. Artificial Intelligence and machine learning (AI/ml)-enabled medical D. U.S. Food and Drug Administration. 2023. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices. Accessed 8 November 2023.

  17. Narang A, Bae R, Hong H, Thomas Y, Surette S, Cadieu C, Chaudhry A, Martin RP, McCarthy PM, Rubenson DS, Goldstein S, Little SH, Lang RM, Weissman NJ, Thomas JD. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 2021;6(6):624–32. https://doi.org/10.1001/jamacardio.2021.0185. PMID: 33599681; PMCID: PMC8204203.

    Article  PubMed  Google Scholar 

  18. Burke DA, Corrigan N, Herlihy M, Nasaj O, Dickson J, Delaney D, Westrup J. Real world evaluation of artificial intelligence echocardiography image guidance and acquisition with novice scanners in multiple clinical settings. Eur Heart J Cardiovasc Imaging. 2022;23(Supplement_1):jeab289.011. https://doi.org/10.1093/ehjci/jeab289.011.

  19. Singh A, Yamat M, Guile B, Mor-Avi V, Lang RM. Performance of artificial intelligence system for prescriptive acquisition guidance of transthoracic echocardiography by novice users combined with automated quantification of ejection fraction. Eur Heart J Cardiovasc Imaging. 2022;23(Supplement_1):jeab289. https://doi.org/10.1093/ehjci/jeab289.

  20. •• He B, Kwan AC, Cho JH, et al. Blinded, randomized trial of sonographer versus AI cardiac function assessment. Nature. 2023;616:520–4. https://doi.org/10.1038/s41586-023-05947-3. The first randomized, blinded study performed comparing AI cardiac function assessment to expert sonographer assessment. Findings from this study suggest that AI is non-inferior and faster than expert sonographer analysis paving the way for future AI lead assessments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peck D, Rwebembera J, Nakagaayi D, Minja NW, Ollberding NJ, Pulle J, Klein J, Adams D, Martin R, Koepsell K, Sanyahumbi A, Beaton A, Okello E, Sable C. The use of artificial intelligence guidance for rheumatic heart disease screening by novices. J Am Soc Echocardiogr. 2023;36(7):724–32. https://doi.org/10.1016/j.echo.2023.03.001. Epub 2023 Mar 9 PMID: 36906047.

    Article  PubMed  Google Scholar 

  22. Zhou J, Du M, Chang S, Chen Z. Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovasc Ultrasound. 2021;19(1):29. https://doi.org/10.1186/s12947-021-00261-2. PMID: 34416899; PMCID: PMC8379752.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Asch FM, Poilvert N, Abraham T, Jankowski M, Cleve J, Adams M, et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert. Circ Cardiovasc Imaging. 2019;12(9):e009303.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salte IM, Oestvik A, Smistad E, Melichova D, Nguyen TM, Brunvand H. et al. 545 Deep learning/artificial intelligence for automatic measurement of global longitudinal strain by echocardiography. Eur Heart J Cardiovasc Imaging. 2020;21(Suppl 1):jez319.279.

  25. Li Y, Garson CD, Xu Y, Helm PA, Hossack JA, French BA. Serial ultrasound evaluation of intramyocardial strain after reperfused myocardial infarction reveals that remote zone dyssynchrony develops in concert with left ventricular remodeling. Ultrasound Med Biol. 2011;37(7):1073–86. https://doi.org/10.1016/j.ultrasmedbio.2011.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bersvendsen J, Orderud F, Lie Ø, et al. Semiautomated biventricular segmentation in three-dimensional echocardiography by coupled deformable surfaces. J Med Imaging. 2017;4(2):024005. https://doi.org/10.1117/1.JMI.4.2.024005.

    Article  Google Scholar 

  27. Tromp J, Seekings PJ, Hung CL, Iversen MB, Frost MJ, Ouwerkerk W, Jiang Z, Eisenhaber F, Goh RSM, Zhao H, Huang W, Ling LH, Sim D, Cozzone P, Richards AM, Lee HK, Solomon SD, Lam CSP, Ezekowitz JA. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit Health. 2022;4(1):e46–54. https://doi.org/10.1016/S2589-7500(21)00235-1. Epub 2021 Dec 1 PMID: 34863649.

    Article  CAS  PubMed  Google Scholar 

  28. Kusunose K, Haga A, Yamaguchi N, et al. Deep learning for assessment of left ventricular ejection fraction from echocardiographic images. J Am Soc Echocardiogr. 2020;33(5):632–635.e1. https://doi.org/10.1016/j.echo.2020.01.009.

    Article  PubMed  Google Scholar 

  29. Asch FM, Mor-Avi V, Rubenson D, et al. Deep learning-based automated echocardiographic quantification of left ventricular ejection fraction: a point-of-care solution. Circ Cardiovasc Imaging. 2021;14(6):e012293. https://doi.org/10.1161/CIRCIMAGING.120.012293.

    Article  PubMed  Google Scholar 

  30. Hathaway QA, Yanamala N, Siva NK, Adjeroh DA, Hollander JM, Sengupta PP. Ultrasonic texture features for assessing cardiac remodeling and dysfunction. J Am Coll Cardiol. 2022;80(23):2187–2201. https://doi.org/10.1016/j.jacc.2022.09.036. PMID: 36456049.

  31. Sakamoto T, Ito S, Endo A, Yoshitomi H, Tanabe K. Classification of HFrEF based on echocardiography using machine learning to predict future HFrecEF events. Eur Heart J. 2020.41;(Supplement_2):ehaa946.0923. https://doi.org/10.1093/ehjci/ehaa946.0923.

  32. Nedadur R, Wang B, Tsang W. Artificial intelligence for the echocardiographic assessment of valvular heart disease. Heart. 2022;108(20):1592–9. https://doi.org/10.1136/heartjnl-2021-319725. PMID: 35144983; PMCID: PMC9554049 .

    Article  PubMed  Google Scholar 

  33. • Sengupta PP, Shrestha S, Kagiyama N, Hamirani Y, Kulkarni H, Yanamala N, Bing R, Chin CWL, Pawade TA, Messika-Zeitoun D, Tastet L, Shen M, Newby DE, Clavel MA, Pibarot P, Dweck MR. Artificial intelligence for aortic stenosis at risk international consortium. A machine-learning framework to identify distinct phenotypes of aortic stenosis severity. JACC Cardiovasc Imaging. 2021;14(9):1707–1720. https://doi.org/10.1016/j.jcmg.2021.03.020. Epub 2021 May 19. PMID: 34023273; PMCID: PMC8434951. Findings from this study demonstrated that ML models demonstrated better discrimination and reclassification in patients with aortic stenosis compared with standard-of-care AS grading systems and risk stratification phenogrouping.

  34. Bernard J, Yanamala N, Shah R, Seetharam K, Altes A, Dupuis M, Toubal O, Mahjoub H, Dumortier H, Tartar J, Salaun E, O'Connor K, Bernier M, Beaudoin J, Côté N, Vincentelli A, LeVen F, Maréchaux S, Pibarot P, Sengupta PP. Integrating echocardiography parameters with explainable artificial intelligence for data-driven clustering of primary mitral regurgitation phenotypes. JACC Cardiovasc Imaging. 2023:S1936–878X(23)00113–4. https://doi.org/10.1016/j.jcmg.2023.02.016. Epub ahead of print. PMID: 37178071.

  35. Pinto YM, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37:1850–8. https://doi.org/10.1093/eurheartj/ehv727.

    Article  PubMed  Google Scholar 

  36. Gigli M, et al. Insights into mildly dilated cardiomyopathy: temporal evolution and long-term prognosis. Eur J Heart Fail. 2017;19:531–9. https://doi.org/10.1002/ejhf.608.

    Article  PubMed  Google Scholar 

  37. Liu B, Chang H, Yang D, et al. A deep learning framework assisted echocardiography with diagnosis, lesion localization, phenogrouping heterogeneous disease, and anomaly detection. Sci Rep. 2023;13:3. https://doi.org/10.1038/s41598-022-27211-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Valsaraj A, Kalmady SV, Sharma V, Frost M, Sun W, Sepehrvand N, Ong M, Equilbec C, Dyck JRB, Anderson T, Becher H, Weeks S, Tromp J, Hung CL, Ezekowitz JA, Kaul P. Development and validation of echocardiography-based machine-learning models to predict mortality. EBioMedicine. 2023;90:104479. https://doi.org/10.1016/j.ebiom.2023.104479. Epub 2023 Feb 28. PMID: 36857967; PMCID: PMC10006431.

  39. Sengupta PP, Shrestha S, Berthon B, Messas E, Donal E, Tison GH, Min JK, D'hooge J, Voigt JU, Dudley J, Verjans JW, Shameer K, Johnson K, Lovstakken L, Tabassian M, Piccirilli M, Pernot M, Yanamala N, Duchateau N, Kagiyama N, Bernard O, Slomka P, Deo R, Arnaout R. Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council. JACC Cardiovasc Imaging. 2020;13(9):2017–2035. https://doi.org/10.1016/j.jcmg.2020.07.015. PMID: 32912474; PMCID: PMC7953597.

  40. Rich JD, Burns J, Freed BH, Maurer MS, Burkhoff D, Shah SJ. Meta-Analysis Global Group in Chronic (MAGGIC) Heart Failure Risk Score: validation of a simple tool for the prediction of morbidity and mortality in heart failure with preserved ejection fraction. J Am Heart Assoc. 2018;7(20):e009594. https://doi.org/10.1161/JAHA.118.009594. PMID: 30371285; PMCID: PMC6474968 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ulloa Cerna AE, Jing L, Good CW, et al. Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality. Nat Biomed Eng. 2021;5(6):546–54. https://doi.org/10.1038/s41551-020-00667-9. PMID: 33558735.

    Article  PubMed  Google Scholar 

  42. Kwon J-M, Kim K-H, Jeon K-H, Park J. Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography. Echocardiography. 2019;36:213–8. https://doi.org/10.1111/echo.14220.

    Article  PubMed  Google Scholar 

  43. Poldervaart JM, Langedijk M, Backus BE, et al. Comparison of the GRACE, HEART and TIMI score to predict major adverse cardiac events in chest pain patients at the emergency department. Int J Cardiol. 2017;227:656–661

  44. Antman EM, Cohen M, Bernink PJLM, et al. The TIMI Risk Score for unstable angina/non–ST elevation MI: a method for prognostication and therapeutic decision making. JAMA. 2000;284(7):835–42. https://doi.org/10.1001/jama.284.7.835.

    Article  CAS  PubMed  Google Scholar 

  45. Montomoli J, Hilty MP, Ince C. Artificial intelligence in intensive care: moving towards clinical decision support systems. Minerva Anestesiol. 2022;88(12):1066–72. https://doi.org/10.23736/S0375-9393.22.16739-8. Epub 2022 Oct 26 PMID: 36287392.

    Article  PubMed  Google Scholar 

  46. IMDRF Software as a Medical Device (SaMD). Working group software as a medical device (SaMD): key definitions. Doc no. IMDRF/SaMD WG/N10 FINAL:2013. Int Med Device Reg Forum (IMDRF). http://www.imdrf.org/docs/imdrf/final/technical/imdrf-tech-131209-samd-key-definitions-140901.pdf. Available at: Published September 9, 2013.

  47. Kohli A, Mahajan V, Seals K, Kohli A, Jha S. Concepts in U.S. Food and drug administration regulation of artificial intelligence for medical imaging. AJR Am J Roentgenol. (2019) 213:886–8. https://doi.org/10.2214/AJR.18.20410.

  48. Pou-Prom C, Murray J, Kuzulugil S, Mamdani M, Verma AA. From compute to care: lessons learned from deploying an early warning system into clinical practice. Front Digit Health. 2022;5(4):932123. https://doi.org/10.3389/fdgth.2022.932123. PMID: 36133802; PMCID: PMC9483018.

    Article  Google Scholar 

  49. Sengupta PP, Chandrashekhar YS. Building trust in AI: opportunities and challenges for cardiac imaging. JACC Cardiovasc Imaging. 2021;14(2):520–2. https://doi.org/10.1016/j.jcmg.2021.01.002. PMID: 33541532.

    Article  PubMed  Google Scholar 

  50. Danilov A, Aronow WS. Artificial intelligence in cardiology: applications and obstacles. Curr Probl Cardiol. 2023 Apr 21;48(9):101750. https://doi.org/10.1016/j.cpcardiol.2023.101750. Epub ahead of print. PMID: 37088174.

  51. Gilbert A, Marciniak M, Rodero C, Lamata P, Samset E, Mcleod K. Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation. IEEE Trans Med Imaging. 2021 Oct;40(10):2783–2794. https://doi.org/10.1109/TMI.2021.3051806. Epub 2021 Sep 30. PMID: 33444134; PMCID: PMC8493532.

  52. • Plana D, Shung DL, Grimshaw AA, Saraf A, Sung JJY, Kann BH. Randomized clinical trials of machine learning interventions in health care: a systematic review. JAMA Netw Open. 2022;5(9):e2233946. https://doi.org/10.1001/jamanetworkopen.2022.33946. PMID: 36173632; PMCID: PMC9523495 . Large systematic review of machine learning interventions in healthcare. Shows data of AI usage in other modalities other than echocardiography and its robust role in the cardiovascular healthcare future. Also encompasses landmark studies in the realm of AI.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu, X., Cruz Rivera, S., Moher, D. et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence. The CONSORT-AI extension. Nat Med. 2020;26:1364–74. https://doi.org/10.1038/s41591-020-1034-x.

    Article  CAS  Google Scholar 

  54. Ibrahim H, Liu X, Rivera SC, Moher D, Chan AW, Sydes MR, Calvert MJ, Denniston AK. Reporting guidelines for clinical trials of artificial intelligence interventions: the SPIRIT-AI and CONSORT-AI guidelines. Trials. 2021;22(1):11. https://doi.org/10.1186/s13063-020-04951-6. PMID: 33407780; PMCID: PMC7788716.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cagliero D, Deuitch N, Shah N, Feudtner C, Char D. A framework to identify ethical concerns with ML-guided care workflows: a case study of mortality prediction to guide advance care planning. J Am Med Inform Assoc. 2023;30(5):819–27. https://doi.org/10.1093/jamia/ocad022. PMID: 36826400; PMCID: PMC10114055.

    Article  PubMed  Google Scholar 

  56. Ploug T, Sundby A, Moeslund T, Holm S. Population preferences for performance and explainability of artificial intelligence in health care: choice-based conjoint survey. J Med Internet Res 2021;23(12):e26611. https://www.jmir.org/2021/12/e26611.

  57. https://wellcome.org/sites/default/files/ai-in-health-ethical-social-political-challenges.pdf. Accessed 11.02.2022.

  58. Ethics and governance of artificial intelligence for health: WHO guidance. Geneva: World Health Organization; 2021. License: CC BY-NC-SA 3.0 IGO.

  59. Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R, Aggarwal K, Ibrahim S, Patil V, Smriti K, Shetty S, Rai BP, Chlosta P, Somani BK. Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility? Front Surg. 2022;14(9):862322. https://doi.org/10.3389/fsurg.2022.862322. PMID: 35360424; PMCID: PMC8963864 .

    Article  Google Scholar 

  60. Wellnhofer E. Real-world and regulatory perspectives of artificial intelligence in cardiovascular imaging. Front Cardiovasc Med. 2022;22(9):890809. https://doi.org/10.3389/fcvm.2022.890809. PMID: 35935648; PMCID: PMC9354141.

    Article  Google Scholar 

  61. Venkatesh KP, Raza MM, Kvedar JC. Health digital twins as tools for precision medicine: considerations for computation, implementation, and regulation. NPJ Digit Med. 2022;5:150. https://doi.org/10.1038/s41746-022-00694-7.

  62. Biancolini ME, Capellini K, Costa E, Groth C, Celi S. Fast interactive CFD evaluation of hemodynamics assisted by RBF mesh morphing and reduced order models: the case of aTAA modelling. Int J Interactive Design and Manufacturing (IJIDeM). 2020;14:1227–38.

    Article  Google Scholar 

  63. Sharma P, Suehling M, Flohr T, Comaniciu D. Artificial Intelligence in diagnostic imaging: status quo, challenges, and future opportunities. J Thorac Imag. 2020;35:S11–6.

    Article  Google Scholar 

  64. Hirschvogel M, Jagschies L, Maier A, Wildhirt SM, Gee MW. An in silico twin for epicardial augmentation of the failing heart. Int J Numer Method Biomed Eng. 2019;35:e3233.

    Article  PubMed  Google Scholar 

  65. Coorey G, Figtree GA, Fletcher DF et al. The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field. NPJ Digit Med. 2022;5:126. https://doi.org/10.1038/s41746-022-00640-7.

  66. Jorge Corral-Acero and others. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur Heart J. 2020;41(48):4556–64. https://doi.org/10.1093/eurheartj/ehaa159.

    Article  Google Scholar 

  67. Galli V, and others. Towards patient-specific prediction of conduction abnormalities induced by transcatheter aortic valve implantation: a combined mechanistic modeling and machine learning approach. Eur Heart J Digit Health. 2021;2(4):606–15. https://doi.org/10.1093/ehjdh/ztab063.

    Article  Google Scholar 

  68. Waring J, Lindvall C, Umeton R. Automated machine learning: review of the state-of-the-art and opportunities for healthcare. Artif Intell Med. 2020;104:101822. https://doi.org/10.1016/j.artmed.2020.101822. Epub 2020 Feb 21 PMID: 32499001.

    Article  PubMed  Google Scholar 

  69. Vidal-Perez R, Grapsa J, Bouzas-Mosquera A, Fontes-Carvalho R, Vazquez-Rodriguez JM. Current role and future perspectives of artificial intelligence in echocardiography. World J Cardiol. 2023;15(6):284–92. https://doi.org/10.4330/wjc.v15.i6.284. PMID: 37397831; PMCID: PMC10308270 .

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Sengupta has received funding support from the National Science Foundation (NSF) Award: 2125872—NRT-HDR: Bridges in Digital Health.

Author information

Authors and Affiliations

Authors

Contributions

D.A. wrote the main manuscript text and prepared figure 1. K.M. revised the main manuscript text and provided figure 2. N.Y. provided resources and information for the main manuscript text and revised the manuscript text. P.S. supervised and functioned as the corresponding author and revised figure 1-2. All authors were integral in the compilation of the manuscript with multiple revisions and finalization of the main manuscript text.

Corresponding author

Correspondence to Partho Sengupta.

Ethics declarations

Competing Interest

Dr. Sengupta has served on the Advisory Board of RCE Technologies and holds patents (62/864,771; PCT/US2020/037204; 17/617,465). Dr. Yanamala serves on the Advisory Boards of Research Spark Hub Inc. and Turnkey Learning, LLC/Turnkey Learning TechStart Pvt Ltd., Pittsburgh, PA, USA. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, D., Maganti, K., Yanamala, N. et al. The Role of Artificial Intelligence in Echocardiography: A Clinical Update. Curr Cardiol Rep 25, 1897–1907 (2023). https://doi.org/10.1007/s11886-023-02005-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-02005-2

Keywords

Navigation