Skip to main content

Advertisement

Log in

Role of PAI-1 in Pediatric Obesity and Nonalcoholic Fatty Liver Disease

  • Pediatrics (S. Gidding, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this study is to review the role of plasminogen activator inhibitor-1 (PAI-1) in pediatric obesity and nonalcoholic fatty liver disease (NAFLD).

Recent Findings

Ongoing evidence supports that patients with insulin resistance, obesity, NAFLD, and cardiovascular disease have higher levels of PAI-1. The role of PAI-1 in NAFLD has been further delineated and both experimental models and human studies strongly support an independent role of PAI-1 in the pathophysiology of NAFLD.

Summary

Growing evidence supports a mechanistic role of PAI-1 in obesity associated metabolic abnormalities including NAFLD and its long-term association with CVD. Reduction of PAI-1 could be a promising therapeutic strategy for both ongoing hepatic injury and reduction of associated cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016;315:2292–9. doi:10.1001/jama.2016.6361. This nationally representative study reported the current prevalence of childhood obesity and its trend over the past 30 years.

  2. Vukovic R, Milenkovic T, Mitrovic K, Todorovic S, Plavsic L, Vukovic A, et al. Preserved insulin sensitivity predicts metabolically healthy obese phenotype in children and adolescents. Eur J Pediatr. 2015;174:1649–55. doi:10.1007/s00431-015-2587-4.

    Article  CAS  PubMed  Google Scholar 

  3. Senechal M, Wicklow B, Wittmeier K, Hay J, MacIntosh AC, Eskicioglu P, et al. Cardiorespiratory fitness and adiposity in metabolically healthy overweight and obese youth. Pediatrics. 2013;132:e85–92. doi:10.1542/peds.2013-0296.

    Article  PubMed  Google Scholar 

  4. Jin R, Le NA, Cleeton R, Sun X, Cruz Munos J, Otvos J, et al. Amount of hepatic fat predicts cardiovascular risk independent of insulin resistance among Hispanic-American adolescents. Lipids Health Dis. 2015;14:39. doi:10.1186/s12944-015-0038-x. This work systemically analyzed a full battery of lipid and lipoprotein profile in overweight/obese children and suggested that increased hepatic fat was strongly associated with peripheral dyslipidemia and inflluences cardiovascular risk.

  5. Singh A, Foster GD, Gunawardana J, McCoy TA, Nguyen T, Vander Veur S, et al. Elevated circulating tissue factor procoagulant activity, factor VII, and plasminogen activator inhibitor-1 in childhood obesity: evidence of a procoagulant state. Br J Haematol. 2012;158:523–7. doi:10.1111/j.1365-2141.2012.09160.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holzberg JR, Jin R, Le NA, Ziegler TR, Brunt EM, McClain CJ, et al. Plasminogen activator inhibitor-1 predicts quantity of hepatic steatosis independent of insulin resistance and body weight. J Pediatr Gastroenterol Nutr. 2016;62:819–23. doi:10.1097/mpg.0000000000001096. This study strongly supported an independent role of PAI-1 in NAFLD in children by showing that plasma PAI-1 levels significantly increased across the severity of hepatic steatosis after controlling for BMI, visceral fat, insulin resistance, and inflammatory markers.

  7. Chang ML, Hsu CM, Tseng JH, Tsou YK, Chen SC, Shiau SS, et al. Plasminogen activator inhibitor-1 is independently associated with non-alcoholic fatty liver disease whereas leptin and adiponectin vary between genders. J Gastroenterol Hepatol. 2015;30:329–36. doi:10.1111/jgh.12705.

    Article  CAS  PubMed  Google Scholar 

  8. Marcelino Rodriguez I, Oliva Garcia J, Aleman Sanchez JJ, Almeida Gonzalez D, Dominguez Coello S, Brito Diaz B, et al. Lipid and inflammatory biomarker profiles in early insulin resistance. Acta Diabetol. 2016;53:905–13. doi:10.1007/s00592-016-0885-6.

    Article  CAS  PubMed  Google Scholar 

  9. Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med. 2000;342:1792–801. doi:10.1056/nejm200006153422406.

    Article  CAS  PubMed  Google Scholar 

  10. Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther. 2010;28:e72–91. doi:10.1111/j.1755-5922.2010.00171.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Meijer M, Pannekoek H. Structure of plasminogen activator inhibitor 1 (PAI-1) and its function in fibrinolysis: an update. Fibrinolysis. 1995;9:263–76. doi:10.1016/S0268-9499(95)80015-8.

    Article  Google Scholar 

  12. Tjarnlund-Wolf A, Brogren H, Lo EH, Wang X. Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases. Stroke. 2012;43:2833–9. doi:10.1161/strokeaha.111.622217.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord. 2004;28:1357–64. doi:10.1038/sj.ijo.0802778.

    Article  CAS  PubMed  Google Scholar 

  14. Kaji H. Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr Physiol. 2016;6:1873–96. doi:10.1002/cphy.c160004.

    Article  PubMed  Google Scholar 

  15. Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol and Biochem. 2008;114:183–94. doi:10.1080/13813450802181047.

    Article  CAS  Google Scholar 

  16. Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J Biol Chem. 2012;287:40161–72. doi:10.1074/jbc.M112.417014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naldini L, Vigna E, Bardelli A, Follenzi A, Galimi F, Comoglio PM. Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction. J Biol Chem. 1995;270:603–11.

    Article  CAS  PubMed  Google Scholar 

  18. Kanuri G, Spruss A, Wagnerberger S, Bischoff SC, Bergheim I. Fructose-induced steatosis in mice: role of plasminogen activator inhibitor-1, microsomal triglyceride transfer protein and NKT cells. Lab Invest. 2011;91:885–95. doi:10.1038/labinvest.2011.44.

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-Alemany R, Redondo JM, Nagamine Y, Munoz-Canoves P. Plasminogen activator inhibitor type-1 inhibits insulin signaling by competing with alphavbeta3 integrin for vitronectin binding. Eur J Biochem. 2003;270:814–21.

    Article  CAS  PubMed  Google Scholar 

  20. Ito S, Iwaki S, Koike K, Yuda Y, Nagasaki A, Ohkawa R, et al. Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. Coron Artery Dis. 2013;24:642–50. doi:10.1097/mca.0000000000000033.

    PubMed  Google Scholar 

  21. Ohkura N, Shirakura M, Nakatani E, Oishi K, Atsumi G. Associations between plasma PAI-1 concentrations and its expressions in various organs in obese model mice. Thromb Res. 2012;130:e301–4. doi:10.1016/j.thromres.2012.08.297.

    Article  CAS  PubMed  Google Scholar 

  22. Duburcq T, Tournoys A, Gnemmi V, Hubert T, Gmyr V, Pattou F, et al. Impact of obesity on endotoxin-induced disseminated intravascular coagulation. Shock. 2015;44:341–7. doi:10.1097/shk.0000000000000428.

    Article  CAS  PubMed  Google Scholar 

  23. Giordano P, Del Vecchio GC, Cecinati V, Delvecchio M, Altomare M, De Palma F, et al. Metabolic, inflammatory, endothelial and haemostatic markers in a group of Italian obese children and adolescents. Eur J Pediatr. 2011;170:845–50. doi:10.1007/s00431-010-1356-7.

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez M, del Mar Bibiloni M, Pons A, Llompart I, Tur JA. Inflammatory markers and metabolic syndrome among adolescents. Eur J Clin Nutr. 2012;66:1141–5. doi:10.1038/ejcn.2012.112.

    Article  CAS  PubMed  Google Scholar 

  25. Gomez Garcia A, Nunez GG, Sandoval ME, Castellanos SG, Alvarez Aguilar C. Factors associated with early platelet activation in obese children. Clin Med Res. 2014;12(10.3121/cmr.2013.1166):21–6. This study well characterized the correlation between increased PAI-1and childhood obesity.

  26. Olza J, Aguilera CM, Gil-Campos M, Leis R, Bueno G, Valle M, et al. Waist-to-height ratio, inflammation and CVD risk in obese children. Public Health Nutr. 2014;17:2378–85. doi:10.1017/s1368980013003285. This study analyzed a large group of children and supported the strong correlation between obesity and elevated PAI-1 levels.

  27. Olza J, Aguilera CM, Gil-Campos M, Leis R, Bueno G, Valle M, et al. A continuous metabolic syndrome score is associated with specific biomarkers of inflammation and CVD risk in prepubertal children. Ann Nutr Metab. 2015;66:72–9. doi:10.1159/000369981. This study analyzed a large cohort of prepubertal children and found that activated PAI-1 levels were closely associated with higher metabolic syndrome score.

  28. Loureiro C, Godoy A, Martinez A, Campino C, Aglony M, Bancalari R, et al. Metabolic syndrome and its components are strongly associated with an inflammatory state and insulin resistance in the pediatric population. Nutr Hosp. 2015;31:1513–8. doi:10.3305/nh.2015.31.4.8264.

    PubMed  Google Scholar 

  29. Chen JS, Wu CZ, Chu NF, Chang LC, Pei D, Lin YF. Association among fibrinolytic proteins, metabolic syndrome components, insulin secretion, and resistance in schoolchildren. Int J Endocrinol. 2015;2015:170987. doi:10.1155/2015/170987.

    PubMed  PubMed Central  Google Scholar 

  30. Varma MC, Kusminski CM, Azharian S, Gilardini L, Kumar S, Invitti C, et al. Metabolic endotoxaemia in childhood obesity. BMC Obes. 2015;3:3. doi:10.1186/s40608-016-0083-7.

    Article  PubMed  Google Scholar 

  31. Huang F, del-Rio-Navarro BE, de Castro GT, Alcantara ST, Sienra Monge JJ, Ontiveros JA, et al. Weight loss induced by 6-month lifestyle intervention improves early endothelial activation and fibrinolysis in obese adolescents. Child Care Health Dev. 2011;37:377–84. doi:10.1111/j.1365-2214.2010.01173.x.

    Article  CAS  PubMed  Google Scholar 

  32. Izadpanah A, Barnard RJ, Almeda AJ, Baldwin GC, Bridges SA, Shellman ER, et al. A short-term diet and exercise intervention ameliorates inflammation and markers of metabolic health in overweight/obese children. Am J Physiol Endocrinol Metab. 2012;303:E542–50. doi:10.1152/ajpendo.00190.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barbeau P, Litaker MS, Woods KF, Lemmon CR, Humphries MC, Owens S, et al. Hemostatic and inflammatory markers in obese youths: effects of exercise and adiposity. J Pediatr. 2002;141:415–20. doi:10.1067/mpd.2002.127497.

    Article  PubMed  Google Scholar 

  34. Mantovani RM, Rios DR, Moura LC, Oliveira JM, Carvalho FF, Cunha SB, et al. Childhood obesity: evidence of an association between plasminogen activator inhibitor-1 levels and visceral adiposity. J Pediatr Endocrinol Metab. 2011;24:361–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sudi K, Gallistl S, Payerl D, Aigner R, Moller R, Tafeit E, et al. Interrelationship between estimates of adiposity and body fat distribution with metabolic and hemostatic parameters in obese children. Metabolism. 2001;50:681–7.

    Article  CAS  PubMed  Google Scholar 

  36. Barnard SA, Pieters M, De Lange Z. The contribution of different adipose tissue depots to plasma plasminogen activator inhibitor-1 (PAI-1) levels. Blood Rev. 2016;30:421–9. doi:10.1016/j.blre.2016.05.002.

    Article  CAS  PubMed  Google Scholar 

  37. Ekstrom M, Liska J, Eriksson P, Sverremark-Ekstrom E, Tornvall P. Stimulated in vivo synthesis of plasminogen activator inhibitor-1 in human adipose tissue. Thromb Haemost. 2012;108:485–92. doi:10.1160/th11-11-0822.

    Article  PubMed  Google Scholar 

  38. Eriksson P, Van Harmelen V, Hoffstedt J, Lundquist P, Vidal H, Stemme V, et al. Regional variation in plasminogen activator inhibitor-1 expression in adipose tissue from obese individuals. Thromb Haemost. 2000;83:545–8.

    CAS  PubMed  Google Scholar 

  39. Barnard SA, Pieters M, Nienaber-Rousseau C, Kruger HS. Degree of obesity influences the relationship of PAI-1 with body fat distribution and metabolic variables in African women. Thromb Res. 2016;146:95–102. doi:10.1016/j.thromres.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  40. Illan Gomez F, Gonzalvez Ortega M, Aragon Alonso A, Orea Soler S, Alcaraz Tafalla M, Perez Paredes M, et al. Obesity, endothelial function and inflammation: the effects of weight loss after bariatric surgery. Nutr Hosp. 2016;33:1340. doi:10.20960/nh.793.

    Article  PubMed  Google Scholar 

  41. Schwimmer JB, Lavine JE, Wilson LA, Neuschwander-Tetri BA, Xanthakos SA, Kohli R, et al. In children with nonalcoholic fatty liver disease, cysteamine bitartrate delayed release improves liver enzymes but does not reduce disease activity scores. Gastroenterology. 2016;151:1141–54.e9. doi:10.1053/j.gastro.2016.08.027.

    Article  Google Scholar 

  42. Vos MB, Abrams SH, Barlow SE, Caprio S, Daniels SR, Kohli R, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children. J Pediatr Gastroenterol Nutr. 2016. doi:10.1097/mpg.0000000000001482.

    Google Scholar 

  43. Volynets V, Kuper MA, Strahl S, Maier IB, Spruss A, Wagnerberger S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci. 2012;57:1932–41. doi:10.1007/s10620-012-2112-9.

    Article  CAS  PubMed  Google Scholar 

  44. Ajmera V, Perito ER, Bass NM, Terrault NA, Yates KP, Gill R, et al. Novel plasma biomarkers associated with liver disease severity in adults with nonalcoholic fatty liver disease. Hepatology. 2017;65:65–77. doi:10.1002/hep.28776. This study analyzed a large group of histologically confirmed NAFLD patients from a multicentered network and suggested that activated PAI-1 was strongly associated with definite NASH compared to no NASH or borderline NASH even after adjusting for clinical factors including liver enzymes, insulin resistance index, and lipids. This finding suggests the independent role of PAI-1 in disease activity and severity and is also valuable for the identification of targets for therapeutic intervention.

  45. Wolfs MG, Gruben N, Rensen SS, Verdam FJ, Greve JW, Driessen A, et al. Determining the association between adipokine expression in multiple tissues and phenotypic features of non-alcoholic fatty liver disease in obesity. Nutr Diabetes. 2015;5, e146. doi:10.1038/nutd.2014.43. This study examined the PAI-1 levels in liver tissues of severely obese adults and observed a positive association between PAI-1 and disease activity and severity of liver injury as indicated by lobular and portal inflammation. This correlation remained significant after the adjustment for obesity, insulin resistance, and type II diabetes.

  46. Verrijken A, Francque S, Mertens I, Prawitt J, Caron S, Hubens G, et al. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2014;59:121–9. doi:10.1002/hep.26510. This study consecutively recruited a large series of patients with a wide BMI range and reported an independent correlation between elevated PAI-1 and increased severity of liver steatosis, lobular inflammation, ballooning, and fibrosis even after controlling for other metabolic factors. This finding might in part explain the increaed cardiovascular risk seen in NAFLD patients.

  47. Jin R, Krasinskas A, Le NA, Konomi JV, Holzberg J, Romero R, et al. Association between plasminogen activator inhibitor-1 and severity of liver injury and cardiovascular risk in children with non-alcoholic fatty liver disease. Pediatr Obes. 2016. doi:10.1111/ijpo.12183. This is an important study evaluating the correlation between plasma PAI-1 levels and liver histology in children with NAFLD. Consistent with the findings from adult studies, PAI-1 levels were found to be increased with increased NAFLD activity score and stage of fibrosis, as well as an atherogenic phenotype of plasma lipids and insulin resistance. This suggests that PAI-1 might be a mediator of both NAFLD progression and future cardiovascular complications in chidlren with NAFLD.

  48. Alisi A, Manco M, Devito R, Piemonte F, Nobili V. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J Pediatr Gastroenterol Nutr. 2010;50:645–9. doi:10.1097/MPG.0b013e3181c7bdf1.

    Article  CAS  PubMed  Google Scholar 

  49. Fitzpatrick E, Dew TK, Quaglia A, Sherwood RA, Mitry RR, Dhawan A. Analysis of adipokine concentrations in paediatric non-alcoholic fatty liver disease. Pediatr Obes. 2012;7:471–9. doi:10.1111/j.2047-6310.2012.00082.x.

    Article  CAS  PubMed  Google Scholar 

  50. Bernardi S, Michelli A, Zuolo G, Candido R, Fabris B. Update on RAAS modulation for the treatment of diabetic cardiovascular disease. J Diabetes Res. 2016;2016:8917578. doi:10.1155/2016/8917578.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rosselli MS, Burgueno AL, Carabelli J, Schuman M, Pirola CJ, Sookoian S. Losartan reduces liver expression of plasminogen activator inhibitor-1 (PAI-1) in a high fat-induced rat nonalcoholic fatty liver disease model. Atherosclerosis. 2009;206:119–26. doi:10.1016/j.atherosclerosis.2009.01.026.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshiji H, Noguchi R, Ikenaka Y, Namisaki T, Kitade M, Kaji K, et al. Losartan, an angiotensin-II type 1 receptor blocker, attenuates the liver fibrosis development of non-alcoholic steatohepatitis in the rat. BMC Res Notes. 2009;2:70. doi:10.1186/1756-0500-2-70.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goh GB, Pagadala MR, Dasarathy J, Unalp-Arida A, Sargent R, Hawkins C, et al. Renin-angiotensin system and fibrosis in non-alcoholic fatty liver disease. Liver Int. 2015;35:979–85. doi:10.1111/liv.12611. This study tested the use of renin-angiotensin system (RAS) blockers in treating hypertensive patients with NAFLD and reported improved hepatic fibrosis at the end of intervention.

  54. Yokohama S, Yoneda M, Haneda M, Okamoto S, Okada M, Aso K, et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology. 2004;40:1222–5. doi:10.1002/hep.20420.

    Article  CAS  PubMed  Google Scholar 

  55. Georgescu EF, Georgescu M. Therapeutic options in non-alcoholic steatohepatitis (NASH). Are all agents alike? Results of a preliminary study. J Gastrointestin Liver Dis. 2007;16:39–46.

    PubMed  Google Scholar 

  56. Georgescu EF, Ionescu R, Niculescu M, Mogoanta L, Vancica L. Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol. 2009;15:942–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vos M, Jin R, Welsh J, Konomi J, Karpen SJ, Soler-Rodriquez D, et al. 500 losartan improves hepatic inflammation in children with non-alcoholic fatty liver disease. Gastroenterology. 2016;150:S1036. This is a phase II clinical pilot study testing the efficacy and safety of an angiotensin receptor blocker, losartan, in children with an advanced form of NAFLD. Improved ALT and insulin resistance have been observed with 8 weeks of losartan treatment. This supports the further need of larger clinical trials to investigate the treatment of NAFLD in children.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam B. Vos.

Ethics declarations

Conflict of Interest

Drs Jin, Frediani and Holzberg have no conflicts of interests.

Dr. Vos reports personal fees from Intercept, personal fees from Shire, grants and other from Immuron, grants from Resonance Health, other from AMRA, grants and personal fees from Target Pharmasolutions, other from Allergan, other from Aegerion, outside the submitted work; In addition, Dr. Vos has a patent Biomarker Panel for NAFLD pending to Emory University.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Pediatrics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, R., Frediani, J.K., Holzberg, J. et al. Role of PAI-1 in Pediatric Obesity and Nonalcoholic Fatty Liver Disease. Curr Cardiovasc Risk Rep 11, 11 (2017). https://doi.org/10.1007/s12170-017-0536-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-017-0536-7

Keywords

Navigation