Skip to main content

Advertisement

Log in

A Review on Pyrolysis of Agro-waste and Plastic Waste into Biofuels: Shifting to Bio-based Economy

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

An increase in world energy consumption and its subsequent effect of carbon emission necessitates a shift towards the use of clean and sustainable fuels. Biomass is a promising resource for energy generation owing to its renewable nature and substantial energy content. The addition of plastics to improve the product yield has also been elaborated. Thermogravimetric analysis is a technical tool that can be used to elucidate the pyrolysis temperature and heating rate. Activation energy helps to identify the energy requirement for the pyrolysis process. Kinetics of the pyrolysis process is an effective tool for determining the minimum energy requirement and feasibility. This review highlights the importance of reaction kinetics, exergy, and energy analysis. The liquid fuel obtained through the thermal cracking of biomass has the potential to be used as a blend with conventional petroleum fuels. Substitution/blending of pyro-oil with petroleum fuels helps to reduce greenhouse emissions and global warming. The oxygen content of rice straw and Alga Sargassum sp. is 55 and 67%, respectively. Energy and exergy analysis improves the process economy. The success of any technology depends on its easy handling and economic feasibility. This review is the first of a kind in throwing light on the energy and exergy analysis of the pyrolysis process. Pyro-oil has an increased amount of oxygen content which has to be upgraded for further use. Pyrolysis also serves as an efficient tool for converting plastic waste into energy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

GW :

Gigawatt

MW :

Megawatt

MJ:

Megajoule

RES:

Renewable energy sources

MSW :

Municipal solid waste

DTG:

Derivative thermogravimetric analysis

GC-MS:

Gas chromatography mass spectroscopy

FTIR:

Fourier transform infrared spectroscopy

VM:

Volatile matter

FC:

Fixed carbon

MC:

Moisture content

R 2 :

Correlation coefficient

E a :

Activation energy

R :

Universal gas constant

T :

Temperature

A :

Arrhenius constant

β :

Heating rate

α :

Degree of conversion

KAS:

Kissinger-Akahira-Sunose

OFW:

Ozawa-Flynn-Wall

CI:

Compression ignition

BTE:

Brake thermal efficiency

BSFC:

Brake-specific fuel consumption

CO:

Carbon monoxide

CO2:

Carbon dioxide

HC:

Hydrocarbon

NOx:

Oxides of nitrogen

C :

Carbon

H :

Hydrogen

N :

Nitrogen

S :

Sulfur

O :

Oxygen

References

  1. Aboagye D, Banadda N, Kiggundu N, Kabenge I (2017) Assessment of orange peel waste availability in Ghana and potential bio-oil yield using fast pyrolysis. Renew Sustain Energy Rev 70:814–821. https://doi.org/10.1016/j.rser.2016.11.262

    Article  Google Scholar 

  2. Popp J, Lakner Z, Harangi-Rákos M, Fári M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sustain Energy Rev 32:559–578. https://doi.org/10.1016/j.rser.2014.01.056

    Article  Google Scholar 

  3. Abas N, Kalair A, Khan N (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49. https://doi.org/10.1016/j.futures.2015.03.003

    Article  Google Scholar 

  4. Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 84. https://doi.org/10.1007/s11244-008-9160-6

  5. MNRE Annual report (2020) Annual report 2019-20 - ministry of new and renewable energy. https://mnre.gov.in/the-ministry/physical-progress. Accessed 11 Dec 2020

  6. Bera A, Vij RK, Shah S (2021) Impact of newly implemented enhanced oil and gas recovery screening policy on current oil production and future energy supply in India. J Pet Sci Eng 207:109196. https://doi.org/10.1016/j.petrol.2021.109196

    Article  CAS  Google Scholar 

  7. Balat M, Balat M, Kırtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers Manag 50:3147–3157. https://doi.org/10.1016/j.enconman.2009.08.014

    Article  CAS  Google Scholar 

  8. Corton J, Donnison IS, Patel M et al (2016) Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes. Appl Energy 177:852–862. https://doi.org/10.1016/j.apenergy.2016.05.088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pravin Kumar SA, Nagarajan R, Midhun Prasad K et al (2019) Thermogravimetric study and kinetics of banana peel pyrolysis: a comparison of ‘model-free’ methods. Biofuels 312:1–10. https://doi.org/10.1080/17597269.2019.1647375

    Article  CAS  Google Scholar 

  10. Kothandaraman MP, Somasundaram M (2021) Co-pyrolysis of Juliflora biomass with low-density polyethylene for bio-oil synthesis. Energy Sources Part A Recover Util Environ Eff 43:1134–1149. https://doi.org/10.1080/15567036.2019.1635232

    Article  CAS  Google Scholar 

  11. Hameed S, Sharma A, Pareek V et al (2019) A review on biomass pyrolysis models: kinetic, network and mechanistic models. Biomass Bioenerg 123:104–122. https://doi.org/10.1016/j.biombioe.2019.02.008

    Article  CAS  Google Scholar 

  12. Choudhury ND, Chutia RS, Bhaskar T, Kataki R (2014) Pyrolysis of jute dust: effect of reaction parameters and analysis of products. J Mater Cycles Waste Manag 16:449–459. https://doi.org/10.1007/s10163-014-0268-4

    Article  CAS  Google Scholar 

  13. Singh NB, Kumar A, Rai S (2014) Potential production of bioenergy from biomass in an Indian perspective. Renew Sustain Energy Rev 39:65–78. https://doi.org/10.1016/j.rser.2014.07.110

    Article  Google Scholar 

  14. Yin C (2012) Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresour Technol 120:273–284. https://doi.org/10.1016/j.biortech.2012.06.016

    Article  CAS  PubMed  Google Scholar 

  15. Sukumar V, Manieniyan V, Sivaprakasam S (2015) Bio oil production from biomass using pyrolysis and upgrading - a review. Int J ChemTech Res 8:196–206

    CAS  Google Scholar 

  16. Murugavelh S, Anand B, Midhun Prasad K et al (2019) Exergy analysis and kinetic study of tomato waste drying in a mixed mode solar tunnel dryer. Energy Sources, Part A 1–17. https://doi.org/10.1080/15567036.2019.1679289

  17. Xiao R, Yang W, Cong X et al (2020) Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy 201:117537. https://doi.org/10.1016/j.energy.2020.117537

    Article  CAS  Google Scholar 

  18. Ateş F (2011) Co-pyrolytic behaviors of agricultural wastes. Energy Sources Part A Recover Util Environ Eff 34:111–121. https://doi.org/10.1080/15567036.2010.509211

    Article  Google Scholar 

  19. Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 45:530–539. https://doi.org/10.1016/j.rser.2015.02.007

    Article  Google Scholar 

  20. Pradhan A, Mbohwa C (2014) Development of biofuels in South Africa: challenges and opportunities. Renew Sustain Energy Rev 39:1089–1100. https://doi.org/10.1016/j.rser.2014.07.131

    Article  Google Scholar 

  21. Soni P, Sinha R, Perret SR (2018) Energy use and efficiency in selected rice-based cropping systems of the Middle-Indo Gangetic Plains in India. Energy Rep 4:554–564. https://doi.org/10.1016/j.egyr.2018.09.001

    Article  Google Scholar 

  22. Biswas B, Pandey N, Bisht Y et al (2017) Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol 237:57–63. https://doi.org/10.1016/j.biortech.2017.02.046

    Article  CAS  PubMed  Google Scholar 

  23. Al Arni S (2018) Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew Energy 124:197–201. https://doi.org/10.1016/j.renene.2017.04.060

    Article  CAS  Google Scholar 

  24. Xie H, Yu Q, Qin Q et al (2013) Bio-oil production by fast pyrolysis from agriculture residue in northeastern China. J Renew Sustain Energy 5:013103. https://doi.org/10.1063/1.4773827

    Article  CAS  Google Scholar 

  25. Ulmanen JH, Verbong GPJ, Raven RPJM (2009) Biofuel developments in Sweden and the Netherlands. Renew Sustain Energy Rev 13:1406–1417. https://doi.org/10.1016/j.rser.2008.10.001

    Article  CAS  Google Scholar 

  26. Al-Rumaihi A, Parthasarathy P, Fernandez A et al (2021) Thermal degradation characteristics and kinetic study of camel manure pyrolysis. J Environ Chem Eng 9:106071. https://doi.org/10.1016/j.jece.2021.106071

    Article  CAS  Google Scholar 

  27. Hoover NL, Law JY, Long LAM et al (2019) Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J Environ Manage 252:109582. https://doi.org/10.1016/j.jenvman.2019.109582

    Article  CAS  PubMed  Google Scholar 

  28. Shapovalov Y, Zhadan S, Bochmann G et al (2020) Dry anaerobic digestion of chicken manure: a review. Appl Sci 10:7825. https://doi.org/10.3390/app10217825

    Article  CAS  Google Scholar 

  29. Antony D, Murugavelh S (2018) Anaerobic co-digestion of kitchen waste and wastewater sludge: biogas-based power generation. Biofuels 9:157–162. https://doi.org/10.1080/17597269.2016.1234195

    Article  CAS  Google Scholar 

  30. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood or biomass for bio-oil a critical review. Energy Fuels 20:848–889. https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  31. Ingram L, Mohan D, Bricka M et al (2008) Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy Fuels 22:614–625. https://doi.org/10.1021/ef700335k

    Article  CAS  Google Scholar 

  32. Mishra RK, Mohanty K (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251:63–74. https://doi.org/10.1016/j.biortech.2017.12.029

    Article  CAS  PubMed  Google Scholar 

  33. Ramesh N, Murugavelh S (2020) A cleaner process for conversion of invasive weed (Prosopis juliflora) into energy-dense fuel: kinetics, energy, and exergy analysis of pyrolysis process. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00747-5

    Article  Google Scholar 

  34. Kothandaraman MP, Somasundaram M (2021) Non-isothermal kinetic study on copyrolysis of Juliflora and low-density polyethylene. Biomass Convers Biorefinery 11:2147–2155. https://doi.org/10.1007/s13399-019-00559-2

    Article  CAS  Google Scholar 

  35. Gopinath KP, Nagarajan VM, Krishnan A, Malolan R (2020) A critical review on the influence of energy, environmental and economic factors on various processes used to handle and recycle plastic wastes: development of a comprehensive index. J Clean Prod 274:123031. https://doi.org/10.1016/j.jclepro.2020.123031

    Article  Google Scholar 

  36. Nikolaou K (2008) Environmental management and landfill fire accidents. J Environ Prot Ecol 9:830–834

    CAS  Google Scholar 

  37. Varsha SSV, Soomro AF, Baig ZT et al (2020) Methane production from anaerobic mono- and co-digestion of kitchen waste and sewage sludge: synergy study on cumulative methane production and biodegradability. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00884-x

    Article  Google Scholar 

  38. Oyedun AO, Gebreegziabher T, Ng DKS, Hui CW (2014) Mixed-waste pyrolysis of biomass and plastics waste – a modelling approach to reduce energy usage. Energy 75:127–135. https://doi.org/10.1016/j.energy.2014.05.063

    Article  CAS  Google Scholar 

  39. Zheng Y, Yanful EK, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25:243–250. https://doi.org/10.1080/07388550500346359

    Article  CAS  PubMed  Google Scholar 

  40. Anuar Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK (2017) Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Convers Manag 148:925–934. https://doi.org/10.1016/j.enconman.2017.06.046

    Article  CAS  Google Scholar 

  41. British Plastics Federation (2012) Plastics industry in India, annual review 2012. https://www.bpf.co.uk/article/the-plastics-industry-in-india-an-overview-446.aspx. Accessed 6 Feb 2012

  42. Lee D-J, Lu J-S, Chang J-S (2020) Pyrolysis synergy of municipal solid waste (MSW): a review. Bioresour Technol 318:123912. https://doi.org/10.1016/j.biortech.2020.123912

    Article  CAS  PubMed  Google Scholar 

  43. Campuzano F, Brown RC, Martínez JD (2019) Auger reactors for pyrolysis of biomass and wastes. Renew Sustain Energy Rev 102:372–409. https://doi.org/10.1016/j.rser.2018.12.014

    Article  CAS  Google Scholar 

  44. Perkins G, Bhaskar T, Konarova M (2018) Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renew Sustain Energy Rev 90:292–315. https://doi.org/10.1016/j.rser.2018.03.048

    Article  CAS  Google Scholar 

  45. Díez D, Urueña A, Piñero R, Barrio A, Tamminen T (2020) Determination of hemicellulose, cellulose, and lignin content in different types of biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method) Processes 8(9). https://doi.org/10.3390/pr8091048

  46. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  47. Reyes L, Abdelouahed L, Mohabeer C et al (2021) Energetic and exergetic study of the pyrolysis of lignocellulosic biomasses, cellulose, hemicellulose and lignin. Energy Convers Manag 244:114459. https://doi.org/10.1016/j.enconman.2021.114459

    Article  CAS  Google Scholar 

  48. Mishra RK, Mohanty K (2018) Bioresource technology pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. 251:63–74

  49. Raj T, Kapoor M, Gaur R et al (2015) Physical and chemical characterization of various Indian agriculture residues for biofuels production. Energy Fuels 29:3111–3118. https://doi.org/10.1021/ef5027373

    Article  CAS  Google Scholar 

  50. Rajkumar P, Somasundaram M (2020) Non-isothermal conversion of wheat husk and low-density polyethylene for energy dense fuel production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00951-3

    Article  Google Scholar 

  51. Nagarajan R, Dharmaraja J, Shobana S et al (2021) A comprehensive investigation on Spirulina platensis – Part I: cultivation of biomass, thermo–kinetic modelling, physico–chemical, combustion and emission analyses of bio–oil blends in compression ignition engine. J Environ Chem Eng 9:105231. https://doi.org/10.1016/j.jece.2021.105231

    Article  CAS  Google Scholar 

  52. Midhun Prasad K, Murugavelh S (2020) Experimental investigation and kinetics of tomato peel pyrolysis: performance, combustion and emission characteristics of bio-oil blends in diesel engine. J Clean Prod 254:120115. https://doi.org/10.1016/j.jclepro.2020.120115

    Article  CAS  Google Scholar 

  53. Hassan H, Hameed BH, Lim JK (2020) Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: synergistic effect and product distributions. Energy 191:116545. https://doi.org/10.1016/j.energy.2019.116545

    Article  CAS  Google Scholar 

  54. Farooq MZ, Zeeshan M, Iqbal S et al (2018) Influence of waste tire addition on wheat straw pyrolysis yield and oil quality. Energy 144:200–206. https://doi.org/10.1016/j.energy.2017.12.026

    Article  CAS  Google Scholar 

  55. Izzatie NI, Basha MH, Uemura Y et al (2016) Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer. IOP Conf Ser Mater Sci Eng 160:012033. https://doi.org/10.1088/1757-899X/160/1/012033

    Article  Google Scholar 

  56. Kim S-S, Ly HV, Kim J et al (2013) Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass. Bioresour Technol 139:242–248. https://doi.org/10.1016/j.biortech.2013.03.192

    Article  CAS  PubMed  Google Scholar 

  57. Ramesh N, Somasundaram M (2020) Thermochemical conversion of Parthenium hysterophorus biomass for bio-oil synthesis: kinetics and techno-economic analysis. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00790-2

    Article  Google Scholar 

  58. Hossain MS, Islam MR, Rahman MS et al (2017) Biofuel from co-pyrolysis of solid tire waste and rice husk. Energy Procedia 110:453–458. https://doi.org/10.1016/j.egypro.2017.03.168

    Article  CAS  Google Scholar 

  59. Bharath G, Hai A, Rambabu K et al (2020) Systematic production and characterization of pyrolysis-oil from date tree wastes for bio-fuel applications. Biomass and Bioenergy 135:105523. https://doi.org/10.1016/j.biombioe.2020.105523

    Article  CAS  Google Scholar 

  60. Kabir G, Din ATM, Hameed BH (2017) Bioresource Technology Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor : a comparative study. Bioresour Technol 241:563–572. https://doi.org/10.1016/j.biortech.2017.05.180

    Article  CAS  PubMed  Google Scholar 

  61. Kumar RS, Sivakumar S, Joshuva A et al (2021) Bio-fuel production from Martynia annua L. seeds using slow pyrolysis reactor and its effects on diesel engine performance, combustion and emission characteristics. Energy 217:119327. https://doi.org/10.1016/j.energy.2020.119327

    Article  CAS  Google Scholar 

  62. Ahmed A, Abu Bakar MS, Sukri RS et al (2020) Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Convers Manag 226:113502. https://doi.org/10.1016/j.enconman.2020.113502

    Article  CAS  Google Scholar 

  63. Chin BLF, Yusup S, Al Shoaibi A et al (2014) Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Energy Convers Manag 87:746–753. https://doi.org/10.1016/j.enconman.2014.07.043

    Article  CAS  Google Scholar 

  64. Yu D, Hui H, Li S (2019) Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil. Energy Convers Manag 198:111816. https://doi.org/10.1016/j.enconman.2019.111816

    Article  CAS  Google Scholar 

  65. Deng T, Yu Z, Zhang X et al (2020) Catalytic co-pyrolysis behaviors and kinetics of camellia shell and take-out solid waste using pyrolyzer – gas chromatography/mass spectrometry and thermogravimetric analyzer. Bioresour Technol 297:122419. https://doi.org/10.1016/j.biortech.2019.122419

    Article  CAS  PubMed  Google Scholar 

  66. Miranda R, Bustos-Martinez D, Blanco CS et al (2009) Pyrolysis of sweet orange (Citrus sinensis) dry peel. J Anal Appl Pyrolysis 86:245–251. https://doi.org/10.1016/j.jaap.2009.06.001

    Article  CAS  Google Scholar 

  67. Li J, Li L, Tong YW, Wang X (2022) Understanding and optimizing the gasification of biomass waste with machine learning. Green Chem Eng. https://doi.org/10.1016/j.gce.2022.05.006

    Article  Google Scholar 

  68. Rosha P, Ibrahim H (2022) Technical feasibility of biomass and paper-mill sludge co-gasification for renewable fuel production using Aspen Plus. Energy 258:124883. https://doi.org/10.1016/j.energy.2022.124883

    Article  CAS  Google Scholar 

  69. He J, Yang Z, Guo M et al (2022) ScienceDirect Experimental study on the key factors affecting the gasification performance between different biomass : compare citrus peel with pine sawdust. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.07.004

    Article  Google Scholar 

  70. James RAM, Yuan W, Boyette MD, Wang D (2018) Airflow and insulation effects on simultaneous syngas and biochar production in a top-lit updraft biomass gasifier. Renew Energy 117:116–124. https://doi.org/10.1016/j.renene.2017.10.034

    Article  CAS  Google Scholar 

  71. Yin Y, Hu Y, Wang J (2022) Co-fermentation of sewage sludge and lignocellulosic biomass for production of medium-chain fatty acids. Bioresour Technol 361:127665. https://doi.org/10.1016/j.biortech.2022.127665

  72. Li Y, Xu Y, Xue Y et al (2022) Ethanol production from lignocellulosic biomass by co-fermentation with Pecoramyces sp. F1 and Zymomonas mobilis ATCC 31821 in an integrated process. Biomass Bioenerg 161:106454. https://doi.org/10.1016/j.biombioe.2022.106454

  73. Fakayode OA, Akpabli-Tsigbe NDK, Wahia H et al (2021) Integrated bioprocess for bio-ethanol production from watermelon rind biomass: Ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis and fermentation. Renew Energy 180:258–270. https://doi.org/10.1016/j.renene.2021.08.057

    Article  CAS  Google Scholar 

  74. Song Y, Lee YG, Lee DS et al (2022) Utilization of bamboo biomass as a biofuels feedstocks: process optimization with yeast immobilization and the sequential fermentation of glucose and xylose. Fuel 307:121892. https://doi.org/10.1016/j.fuel.2021.121892

  75. Neumann P, Pesante S, Venegas M, Vidal G (2016) Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Biotechnol 15:173–211. https://doi.org/10.1007/s11157-016-9396-8

    Article  CAS  Google Scholar 

  76. Zhan J, Li Y, Huang M et al (2022) Bioresource Technology Improvement of anaerobic digestion of food waste by addition of synthesized allophane. Bioresour Technol 361:127653. https://doi.org/10.1016/j.biortech.2022.127653

    Article  CAS  PubMed  Google Scholar 

  77. Suarez E, Mohedano AF, De Rubia MA (2022) Chemosphere Energy recovery from food waste and garden and park waste : anaerobic co-digestion versus hydrothermal treatment and anaerobic co-digestion. Chemosphere 297:134223. https://doi.org/10.1016/j.chemosphere.2022.134223

    Article  CAS  PubMed  Google Scholar 

  78. Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 78:527–530. https://doi.org/10.1016/j.renene.2015.01.033

    Article  CAS  Google Scholar 

  79. UNEP (2018) Single-use plastics: a roadmap for sustainability. https://www.unep.org/resources/report/single-use-plastics-roadmap-sustainability. Accessed 5 June 2018

  80. Isahak WNRW, Hisham MWM, Yarmo MA, Yun Hin T (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16:5910–5923. https://doi.org/10.1016/j.rser.2012.05.039

    Article  CAS  Google Scholar 

  81. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

    Article  CAS  Google Scholar 

  82. Babu B, Chaurasia A (2003) Modeling, simulation and estimation of optimum parameters in pyrolysis of biomass. Energy Convers Manag 44:2135–2158. https://doi.org/10.1016/S0196-8904(02)00237-6

    Article  CAS  Google Scholar 

  83. Lu J-S, Chang Y, Poon C-S, Lee D-J (2020) Slow pyrolysis of municipal solid waste (MSW): a review. Bioresour Technol 312:123615. https://doi.org/10.1016/j.biortech.2020.123615

    Article  CAS  PubMed  Google Scholar 

  84. Bates R, Dölle K (2017) Syngas use in internal combustion engines - a review. Adv Res 10:1–8. https://doi.org/10.9734/AIR/2017/32896

    Article  Google Scholar 

  85. Lee HW, Choi SJ, Park SH et al (2014) Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst. Nanoscale Res Lett 9:376. https://doi.org/10.1186/1556-276X-9-376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305. https://doi.org/10.1016/0165-2370(82)80017-X

    Article  CAS  Google Scholar 

  87. Dahmen N, Dinjus E, Kruse A (2009) Fuels – hydrogen production | biomass: thermochemical processes. In: Encyclopedia of Electrochemical Power Sources. Elsevier, pp 259–267

  88. Libra JA, Ro KS, Kammann C et al (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. https://doi.org/10.4155/bfs.10.81

    Article  CAS  Google Scholar 

  89. Roy P, Dias G (2017) Prospects for pyrolysis technologies in the bioenergy sector: a review. Renew Sustain Energy Rev 77:59–69. https://doi.org/10.1016/j.rser.2017.03.136

    Article  CAS  Google Scholar 

  90. Jeguirim M, Trouvé G (2009) Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol 100:4026–4031. https://doi.org/10.1016/j.biortech.2009.03.033

    Article  CAS  PubMed  Google Scholar 

  91. Sarkar JK, Wang Q (2020) Characterization of pyrolysis products and kinetic analysis of waste jute stick biomass. Processes 8:837. https://doi.org/10.3390/pr8070837

    Article  CAS  Google Scholar 

  92. Lv D, Xu M, Liu X et al (2010) Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process Technol 91:903–909. https://doi.org/10.1016/j.fuproc.2009.09.014

    Article  CAS  Google Scholar 

  93. Waters CL, Janupala RR, Mallinson RG, Lobban LL (2017) Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: an experimental study of residence time and temperature effects. J Anal Appl Pyrolysis 126:380–389. https://doi.org/10.1016/j.jaap.2017.05.008

    Article  CAS  Google Scholar 

  94. Veses A, Sanahuja-Parejo O, Navarro MV et al (2021) From laboratory scale to pilot plant: evaluation of the catalytic co-pyrolysis of grape seeds and polystyrene wastes with CaO. Catal Today 379:87–95. https://doi.org/10.1016/j.cattod.2020.04.054

    Article  CAS  Google Scholar 

  95. Foong SY, Liew RK, Yang Y et al (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem Eng J 389:124401. https://doi.org/10.1016/j.cej.2020.124401

    Article  CAS  Google Scholar 

  96. Li Z, Li N, Yi W et al (2017) Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis. Fuel Process Technol 161:182–192. https://doi.org/10.1016/j.fuproc.2016.12.014

    Article  CAS  Google Scholar 

  97. Shadangi KP, Mohanty K (2014) Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel. Fuel 115:434–442. https://doi.org/10.1016/j.fuel.2013.07.053

    Article  CAS  Google Scholar 

  98. Salehi E, Abedi J, Harding T (2011) Bio-oil from sawdust: effect of operating parameters on the yield and quality of pyrolysis products. Energy Fuels 25:4145–4154. https://doi.org/10.1021/ef200688y

    Article  CAS  Google Scholar 

  99. Paradela F, Pinto F, Gulyurtlu I et al (2009) Study of the co-pyrolysis of biomass and plastic wastes. Clean Technol Environ Policy 11:115–122. https://doi.org/10.1007/s10098-008-0176-1

    Article  CAS  Google Scholar 

  100. Dewangan A, Pradhan D, Singh RK (2016) Co-pyrolysis of sugarcane bagasse and low-density polyethylene: influence of plastic on pyrolysis product yield. Fuel 185:508–516. https://doi.org/10.1016/j.fuel.2016.08.011

    Article  CAS  Google Scholar 

  101. Rotliwala YC, Parikh PA (2011) Thermal degradation of rice-bran with high density polyethylene: a kinetic study. Korean J Chem Eng 28:788–792. https://doi.org/10.1007/s11814-010-0414-1

    Article  CAS  Google Scholar 

  102. Onal E, Uzun BB, Putun AE (2012) An experimental study on bio-oil production from co-pyrolysis with potato skin and high-density polyethylene (HDPE). Fuel Process Technol 104:365–370. https://doi.org/10.1016/j.fuproc.2012.06.010

    Article  CAS  Google Scholar 

  103. Ye JL, Cao Q, Zhao YS (2008) Co-pyrolysis of polypropylene and biomass. Energy Sources Part A Recover Util Environ Eff 30:1689–1697. https://doi.org/10.1080/15567030701268419

    Article  CAS  Google Scholar 

  104. Hossain MS, Ferdous J, Islam MS et al (2019) Production of liquid fuel from co-pyrolysis of polythene waste and rice straw. Energy Procedia 160:116–122. https://doi.org/10.1016/j.egypro.2019.02.126

    Article  CAS  Google Scholar 

  105. Li H, Jiang X, Cui H et al (2015) Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive. J Anal Appl Pyrolysis 115:37–42. https://doi.org/10.1016/j.jaap.2015.07.004

    Article  CAS  Google Scholar 

  106. Onal E, Uzun BB, Putun AE (2014) Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Convers Manag 78:704–710. https://doi.org/10.1016/j.enconman.2013.11.022

    Article  CAS  Google Scholar 

  107. Yang J, Rizkiana J, Widayatno WB et al (2016) Fast co-pyrolysis of low density polyethylene and biomass residue for oil production. Energy Convers Manag 120:422–429. https://doi.org/10.1016/j.enconman.2016.05.008

    Article  CAS  Google Scholar 

  108. Yang J, Rizkiana J, Bambang W et al (2016) Fast co-pyrolysis of low density polyethylene and biomass residue for oil production. Energy Convers Manag 120:422–429. https://doi.org/10.1016/j.enconman.2016.05.008

    Article  CAS  Google Scholar 

  109. Abnisa F, Wan Daud WMA, Ramalingam S et al (2013) Co-pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel. Fuel 108:311–318. https://doi.org/10.1016/j.fuel.2013.02.013

    Article  CAS  Google Scholar 

  110. Rutkowski P, Kubacki A (2006) Influence of polystyrene addition to cellulose on chemical structure and properties of bio-oil obtained during pyrolysis. Energy Convers Manag 47:716–731. https://doi.org/10.1016/j.enconman.2005.05.017

    Article  CAS  Google Scholar 

  111. Shadangi KP, Mohanty K (2015) Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel. Fuel 153:492–498. https://doi.org/10.1016/j.fuel.2015.03.017

    Article  CAS  Google Scholar 

  112. Wang F, Zheng Y, Huang Y et al (2017) Optimizing catalytic pyrolysis of rubber seed oil for light aromatics and anti-deactivation of ZSM-5. J Anal Appl Pyrolysis 126:180–187. https://doi.org/10.1016/j.jaap.2017.06.010

    Article  CAS  Google Scholar 

  113. Han J, Kim HJ (2009) Pyrolysis characteristic and kinetic of sawdust-polypropylene blend. Energy Sources Part A Recover Util Environ Eff 31:364–371. https://doi.org/10.1080/15567030701530313

    Article  CAS  Google Scholar 

  114. Safdari M-S, Amini E, Weise DR, Fletcher TH (2019) Heating rate and temperature effects on pyrolysis products from live wildland fuels. Fuel 242:295–304. https://doi.org/10.1016/j.fuel.2019.01.040

    Article  CAS  Google Scholar 

  115. Mishra RK, Sahoo A, Mohanty K (2019) Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser. Bioresour Technol 289:121608. https://doi.org/10.1016/j.biortech.2019.121608

    Article  CAS  PubMed  Google Scholar 

  116. Ozsin G, Putun AE (2017) Insights into pyrolysis and co-pyrolysis of biomass and polystyrene: thermochemical behaviors, kinetics and evolved gas analysis. Energy Convers Manag 149:675–685. https://doi.org/10.1016/j.enconman.2017.07.059

    Article  CAS  Google Scholar 

  117. Slopiecka K, Bartocci P, Fantozzi F (2012) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97:491–497. https://doi.org/10.1016/j.apenergy.2011.12.056

    Article  CAS  Google Scholar 

  118. Zaker A, Chen Z, Zaheer U M, Guo J (2021) Co-pyrolysis of sewage sludge and low-density polyethylene – A thermogravimetric study of thermo-kinetics and thermodynamic parameters. J Environ Chem Eng 9:1. https://doi.org/10.1016/j.jece.2020.104554

  119. Qureshi KM, Kay Lup AN, Khan S et al (2018) A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. J Anal Appl Pyrolysis 131:52–75. https://doi.org/10.1016/j.jaap.2018.02.010

    Article  CAS  Google Scholar 

  120. Ali N, Saleem M, Shahzad K et al (2016) Effect of operating parameters on production of bio-oil from fast pyrolysis of maize stalk in bubbling fluidized bed reactor. Polish J Chem Technol 18:88–96. https://doi.org/10.1515/pjct-2016-0053

    Article  CAS  Google Scholar 

  121. Wan Mahari WA, Azwar E, Foong SY et al (2021) Valorization of municipal wastes using co-pyrolysis for green energy production energy security and environmental sustainability: a review. Chem Eng J 421:129749. https://doi.org/10.1016/j.cej.2021.129749

    Article  CAS  Google Scholar 

  122. Brassard P, Godbout S, Raghavan V (2017) Pyrolysis in auger reactors for biochar and bio-oil production: a review. Biosyst Eng 161:80–92. https://doi.org/10.1016/j.biosystemseng.2017.06.020

    Article  Google Scholar 

  123. Heo HS, Park HJ, Park Y-K et al (2010) Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresour Technol 101:S91–S96. https://doi.org/10.1016/j.biortech.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  124. Won S, Seok B, Wook J et al (2013) Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Process Technol 108:118–124. https://doi.org/10.1016/j.fuproc.2012.05.002

    Article  CAS  Google Scholar 

  125. Vu Ly H, Lee B, Wook Sim J et al (2022) Catalytic pyrolysis of spent coffee waste for upgrading sustainable bio-oil in a bubbling fluidized-bed reactor: experimental and techno-economic analysis. Chem Eng J 427:130956. https://doi.org/10.1016/J.CEJ.2021.130956

    Article  CAS  Google Scholar 

  126. Suntivarakorn R, Treedet W, Singbua P, Teeramaetawat N (2018) Fast pyrolysis from Napier grass for pyrolysis oil production by using circulating Fluidized Bed Reactor: improvement of pyrolysis system and production cost. Energy Rep 4:565–575. https://doi.org/10.1016/j.egyr.2018.08.004

    Article  Google Scholar 

  127. Treedet W, Suntivarakorn R (2018) Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Process Technol 179:17–31. https://doi.org/10.1016/J.FUPROC.2018.06.006

    Article  CAS  Google Scholar 

  128. Park JY, Kim JK, Oh CH et al (2019) Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization. J Environ Manage 234:138–144. https://doi.org/10.1016/J.JENVMAN.2018.12.104

    Article  CAS  PubMed  Google Scholar 

  129. Ly HV, Kim SS, Choi JH et al (2016) Fast pyrolysis of Saccharina japonica alga in a fixed-bed reactor for bio-oil production. Energy Convers Manag 122:526–534. https://doi.org/10.1016/j.enconman.2016.06.019

    Article  CAS  Google Scholar 

  130. Shah MA, Khan NS, Kumar V, Qurashi A (2021) Pyrolysis of walnut shell residues in a fixed bed reactor: effects of process parameters, chemical and functional properties of bio-oil. J Environ Chem Eng 9:1–15. https://doi.org/10.1016/j.jece.2021.105564

    Article  CAS  Google Scholar 

  131. Li J (2010) (2010) Study on the maize straw process of fast pyrolysis in the rotating cone reactor and process. Int Conf Challenges Environ Sci Comput Eng CESCE 1:538–541. https://doi.org/10.1109/CESCE.2010.71

    Article  Google Scholar 

  132. Li J (2010) (2010) The optimal of pyrolysis process in the rotating cone reactor and pyrolysis product analysis. Int Conf Challenges Environ Sci Comput Eng CESCE 1:530–533. https://doi.org/10.1109/CESCE.2010.74

    Article  Google Scholar 

  133. Wagenaar BM, Prins W, Van Swaaij WP (1995) Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chem Eng Sci 49:5109–5126

    Article  Google Scholar 

  134. Wagenaar BM, Venderbosch RH, J C, et al (2008) Rotating cone bio-oil production and applications. Blackwell Sci Ltd 1268–1280

  135. Westerhout RWJ, Waanders J, Kuipers JAM, Van Swaaij WPM (1998) Development of a continuous rotating cone reactor pilot plant for the pyrolysis of polyethene and polypropene. Ind Eng Chem Res 37(6):2316–2322. https://doi.org/10.1021/ie970703y

  136. Rego F, Xiang H, Yang Y et al (2022) Investigation of the role of feedstock properties and process conditions on the slow pyrolysis of biomass in a continuous auger reactor. J Anal Appl Pyrolysis 161:105378. https://doi.org/10.1016/J.JAAP.2021.105378

    Article  CAS  Google Scholar 

  137. Yu Y, Yang Y, Cheng Z et al (2016) Pyrolysis of rice husk and corn stalk in auger reactor. 1. Characterization of Char and gas at various temperatures. Energy Fuels 30:10568–10574. https://doi.org/10.1021/acs.energyfuels.6b02276

    Article  CAS  Google Scholar 

  138. Funke A, Tomasi Morgano M, Dahmen N, Leibold H (2017) Experimental comparison of two bench scale units for fast and intermediate pyrolysis. J Anal Appl Pyrolysis 124:504–514. https://doi.org/10.1016/j.jaap.2016.12.033

    Article  CAS  Google Scholar 

  139. Xue Y, Kelkar A, Bai X (2016) Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer. Fuel 166:227–236. https://doi.org/10.1016/j.fuel.2015.10.125

    Article  CAS  Google Scholar 

  140. Kim SW, Koo BS, Ryu JW et al (2013) Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Process Technol 108:118–124. https://doi.org/10.1016/J.FUPROC.2012.05.002

    Article  CAS  Google Scholar 

  141. Hua M-Y, Li B-X (2016) Co-pyrolysis characteristics of the sugarcane bagasse and Enteromorpha prolifera. Energy Convers Manag 120:238–246. https://doi.org/10.1016/j.enconman.2016.04.072

    Article  CAS  Google Scholar 

  142. Lewandowski WM, Januszewicz K, Kosakowski W (2019) Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—a review. J Anal Appl Pyrolysis 140:25–53. https://doi.org/10.1016/j.jaap.2019.03.018

    Article  CAS  Google Scholar 

  143. Guedes RE, Luna AS, Torres AR (2018) Operating parameters for bio-oil production in biomass pyrolysis: a review. J Anal Appl Pyrolysis 129:134–149. https://doi.org/10.1016/j.jaap.2017.11.019

    Article  CAS  Google Scholar 

  144. Salehi E, Abedi J, Harding T (2009) Bio-oil from sawdust: pyrolysis of sawdust in a fixed-bed system. Energy Fuels 23:3767–3772. https://doi.org/10.1021/ef900112b

    Article  CAS  Google Scholar 

  145. Nishiyama Y, Kumagai S, Motokucho S et al (2020) Temperature-dependent pyrolysis behavior of polyurethane elastomers with different hard- and soft-segment compositions. J Anal Appl Pyrolysis 145:104754. https://doi.org/10.1016/j.jaap.2019.104754

    Article  CAS  Google Scholar 

  146. Dewangan A, Yadav AK, Mallick A, et al (2019) Comparative study of Manilkara zapota and Karanja based biodiesel properties and its effect on diesel engine characteristics. Energy Sources Part A 1–11. https://doi.org/10.1080/15567036.2019.1661551

  147. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:4 1956:217–227. https://doi.org/10.6028/jres.057.026

  148. Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 540:6. https://doi.org/10.1016/j.tca.2012.04.008

  149. Huang YF, Te CP, Shih CH et al (2015) Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2capture. Energy 84:75–82. https://doi.org/10.1016/j.energy.2015.02.026

    Article  CAS  Google Scholar 

  150. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:11. https://doi.org/10.1246/bcsj.38.1881

  151. Alam M, Bhavanam A, Jana A et al (2020) Co-pyrolysis of bamboo sawdust and plastic: synergistic effects and kinetics. Renew Energy 149:1133–1145. https://doi.org/10.1016/j.renene.2019.10.103

    Article  CAS  Google Scholar 

  152. Mishra RK, Kumar V, Mohanty K (2020) Pyrolysis kinetics behaviour and thermal pyrolysis of Samanea saman seeds towards the production of renewable fuel. J Energy Inst 93:1148–1162. https://doi.org/10.1016/j.joei.2019.10.008

    Article  CAS  Google Scholar 

  153. Khiari B, Massoudi M, Jeguirim M (2019) Tunisian tomato waste pyrolysis: thermogravimetry analysis and kinetic study. Environ Sci Pollut Res 26:35435–35444. https://doi.org/10.1007/s11356-019-04675-4

    Article  CAS  Google Scholar 

  154. Radojević M, Janković B, Jovanović V et al (2018) Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLoS One 13:e0206657. https://doi.org/10.1371/journal.pone.0206657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shahbeig H, Nosrati M (2020) Pyrolysis of municipal sewage sludge for bioenergy production: thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment. Renew Sustain Energy Rev 119:109567. https://doi.org/10.1016/j.rser.2019.109567

    Article  CAS  Google Scholar 

  156. Kai X, Yang T, Shen S, Li R (2019) TG-FTIR-MS study of synergistic effects during co-pyrolysis of corn stalk and high-density polyethylene (HDPE). Energy Convers Manag 181:202–213. https://doi.org/10.1016/j.enconman.2018.11.065

    Article  CAS  Google Scholar 

  157. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  CAS  Google Scholar 

  158. Ramirez JA, Rainey TJ (2019) Comparative techno-economic analysis of biofuel production through gasification, thermal liquefaction and pyrolysis of sugarcane bagasse. J Clean Prod 229:513–527. https://doi.org/10.1016/j.jclepro.2019.05.017

    Article  CAS  Google Scholar 

  159. van Schalkwyk DL, Mandegari M, Farzad S, Görgens JF (2020) Techno-economic and environmental analysis of bio-oil production from forest residues via non-catalytic and catalytic pyrolysis processes. Energy Convers Manag 213:122815. https://doi.org/10.1016/j.enconman.2020.112815

  160. Neha S, Ramesh KPK, Remya N (2022) Techno-economic analysis and life cycle assessment of microwave co-pyrolysis of food waste and low-density polyethylene. Sustain Energy Technol Assessments 52:102356. https://doi.org/10.1016/j.seta.2022.102356

  161. Wang WC, Liu YC, Nugroho RAA (2022) Techno-economic analysis of renewable jet fuel production: the comparison between Fischer-Tropsch synthesis and pyrolysis. Energy 239. https://doi.org/10.1016/j.energy.2021.121970

  162. Verma M, Godbout S, Brar SK et al (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng 2012:1–18. https://doi.org/10.1155/2012/542426

    Article  CAS  Google Scholar 

  163. Nur Amal Fadhilah, Mohammad Nurul Islam RR (2022) Techno-economic analysis of sawdust and rice husk co-pyrolysis for bio-oil production. Bioresour Technol Reports 101233. https://doi.org/10.1016/j.biteb.2022.101233

Download references

Acknowledgements

The authors wish to convey their sincere gratitude to Vellore Institute of Technology, Vellore and Council for Scientific and Industrial Research (CSIR), Government of India, for the Senior Research Fellowship (SRF) (09/844(0110)/2020-EMR-I).

Funding

This work was also funded by Science and Engineering Research Board (SERB), India, under grant ECR/2016/001304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murugavelh Somasundaram.

Ethics declarations

Ethics approval

This research does not involve participation of any animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K, M.P., Somasundaram, M., Anand, B. et al. A Review on Pyrolysis of Agro-waste and Plastic Waste into Biofuels: Shifting to Bio-based Economy. Bioenerg. Res. 16, 1438–1466 (2023). https://doi.org/10.1007/s12155-023-10565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10565-y

Keywords

Navigation