Skip to main content

Advertisement

Log in

Prospective of Waste Lignocellulosic Biomass as Precursors for the Production of Biochar: Application, Performance, and Mechanism—A Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This article demonstrates the significance and potential of biochar derived from waste materials via thermochemical technique for environmental remediation. Utilization of biochar has made substantial breakthroughs in increasing agricultural productivity, reducing greenhouse gas emissions and global warming, sequester atmospheric carbon into the soil, reducing bioavailability of environmental contaminants, and subsequently becoming a value-added product sustaining bioeconomy. It possesses several unique physicochemical properties (surface area, microporosity, and pH) which provide an avenue to maximize its efficacy to targeted applications and making it highly efficient, cost-effective, and environmentally friendly material for the removal of diverse contaminants. High-temperature pyrolysis produces biochar with high surface area, microporosity, and hydrophobicity which is suitable for the sorption of organic contaminants while low-temperature pyrolysis produces biochar suitable for inorganic/polar organic contaminants. Further, biochar modification significantly alters the surface charges and functionality and ash content and enhances cation exchange capacity. In addition, biochar serves as a promising alternative to the existing conventional wastewater treatment methods and offers the advantage of energy-intensive conditions, incomplete treatment of pollution, risk of secondary pollution of residual chemicals, and high investment requirements. This review discusses the utilization of various waste biomass materials as precursors for the production of biochar under different operating conditions. Production of biochar via pyrolysis was critically examined, especially influencing parameters and pyrolysis mechanism. Recent research on improving biochar adsorption property through physical and chemical modification has been explored. A connection between the structure and the application of biochar is also revealed. To increase the economic benefits of its implementation, future efforts should also be directed towards improving its adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Akdeniz N (2019) A systematic review of biochar use in animal waste composting. J Waste Manag 88:291–300. https://doi.org/10.1016/j.wasman.2019.03.054

    Article  CAS  Google Scholar 

  2. Al-Rumaihi A, Shahbaz M, Mckay G, Mackey H, Al-Ansari T (2022) A review of pyrolysis technologies and feedstock: a blending approach for plastic and biomass towards optimum biochar yield. Renew Sust Energ Rev 167:112715. https://doi.org/10.1016/j.rser.2022.112715

    Article  CAS  Google Scholar 

  3. Ambaye TG, Vaccari M, Van Hullebusch ED, Amrane A, Rtimi S (2021) Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol 18(10):3273–3294. https://doi.org/10.1007/s13762-020-03060-w

    Article  CAS  Google Scholar 

  4. An Q, Miao Y, Zhao B, Li Z, Zhu S (2020) An alkali modified biochar for enhancing Mn2+ adsorption: performance and chemical mechanism. Mater Chem Phys 248:122895. https://doi.org/10.1016/j.matchemphys.2020.122895

    Article  CAS  Google Scholar 

  5. Bashir S, Zhu J, Fu Q, Hu H (2018) Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environ Sci Pollut Res 25(12):11875–11883. https://doi.org/10.1007/s11356-018-1292-z

    Article  CAS  Google Scholar 

  6. Benis KZ, Damuchali AM, Soltan J, McPhedran KN (2020) Treatment of aqueous arsenic–a review of biochar modification methods. Sci Total Environ 739:139750. https://doi.org/10.1016/j.scitotenv.2020.139750

    Article  CAS  Google Scholar 

  7. Berslin D, Reshmi A, Sivaprakash B, Rajamohan N, Kumar PS (2021) Remediation of emerging metal pollutants using environment friendly biochar-review on applications and mechanism. Chemosphere 133384. https://doi.org/10.1016/j.chemosphere.2021.133384

  8. Qiu B, Shao Q, Shi J, Yang C, Chu H (2022) Application of biochar for the adsorption of organic pollutants from wastewater: modification strategies, mechanisms and challenges. Sep Purif Technol 121925. https://doi.org/10.1016/j.seppur.2022.121925

  9. Chen S, Qin C, Wang T, Chen F, Li X, Hou H, Zhou M (2019) Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J Mol Liq 285:62–74. https://doi.org/10.1016/j.molliq.2019.04.035

    Article  CAS  Google Scholar 

  10. Chen Y, Li M, Li Y, Liu Y, Chen Y, Li H, Chen L (2021) Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: adsorption behaviour and mechanisms. Bioresour Technol 321:124413. https://doi.org/10.1016/j.biortech.2020.124413

    Article  CAS  PubMed  Google Scholar 

  11. Cheng N, Wang B, Wu P, Lee X, Xing Y, Chen M, Gao B (2021) Adsorption of emerging contaminants from water and wastewater by modified biochar: a review. Environ Pollut 273:116448. https://doi.org/10.1016/j.envpol.2021.116448

    Article  CAS  PubMed  Google Scholar 

  12. Chi NTL, Anto S, Ahamed TS, Kumar SS, Shanmugam S, Samuel MS, Pugazhendhi A (2021) A review on biochar production techniques and biochar-based catalyst for biofuel production from algae. Fuel 287:119411. https://doi.org/10.1016/j.fuel.2020.119411

    Article  CAS  Google Scholar 

  13. Chi T, Zuo J, Liu F (2017) Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar. Front Environ Sci Eng 11(2):1–8. https://doi.org/10.1007/s11783-017-0921-y

    Article  CAS  Google Scholar 

  14. Chiappero M, Norouzi O, Hu M, Demichelis F, Berruti F, Di Maria F, Fiore S (2020) Review of biochar role as additive in anaerobic digestion processes. Renew Sust Energ Rev 131:110037. https://doi.org/10.1016/j.rser.2020.110037

    Article  CAS  Google Scholar 

  15. Cuong DV, Matsagar BM, Lee M, Hossain MSA, Yamauchi Y, Vithanage M, Hou CH (2021) A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage. Renew Sust Energ Rev 145:111029. https://doi.org/10.1016/j.rser.2021.111029

    Article  CAS  Google Scholar 

  16. Dai Y, Zhang N, Xing C, Cui Q, Sun Q (2019) The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223:12–27. https://doi.org/10.1016/j.chemosphere.2019.01.161

    Article  CAS  PubMed  Google Scholar 

  17. Deng H, Li Q, Huang M, Li A, Zhang J, Li Y, Mo W (2020) Removal of Zn (II), Mn (II) and Cu (II) by adsorption onto banana stalk biochar: adsorption process and mechanisms. Water Sci Technol 82(12):2962–2974. https://doi.org/10.2166/wst.2020.543

    Article  CAS  PubMed  Google Scholar 

  18. Deng J, Liu Y, Liu S, Zeng G, Tan X, Huang B, Yan Z (2017) Competitive adsorption of Pb (II), Cd (II) and Cu (II) onto chitosan-pyromellitic dianhydride modified biochar. J Colloid Interface Sci 506:355–364. https://doi.org/10.1016/j.jcis.2017.07.069

    Article  CAS  PubMed  Google Scholar 

  19. Deng Y, Huang S, Laird DA, Wang X, Meng Z (2019) Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single-and binary-metal systems. Chemosphere 218:308–318. https://doi.org/10.1016/j.chemosphere.2018.11.081

    Article  CAS  PubMed  Google Scholar 

  20. Deng Y, Li X, Ni F, Liu Q, Yang Y, Wang M, Chen W (2021) Synthesis of magnesium modified biochar for removing copper, lead and cadmium in single and binary systems from aqueous solutions: adsorption mechanism. Water 13(5):599. https://doi.org/10.3390/w13050599

    Article  CAS  Google Scholar 

  21. Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Cai X (2016) Competitive removal of Cd (II) and Pb (II) by biochars produced from water hyacinths: performance and mechanism. RSC Adv 6(7):5223–5232. https://doi.org/10.1039/C5RA26248H

    Article  CAS  Google Scholar 

  22. El-Naggar A, Lee SS, Rinklebe J, Farooq M, Song H, Sarmah AK, Ok YS (2019) Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337:536–554. https://doi.org/10.1016/j.geoderma.2018.09.034

    Article  CAS  Google Scholar 

  23. Gholizadeh M, Hu X (2021) Removal of heavy metals from soil with biochar composite: a critical review of the mechanism. J Environ Chem Eng 9(5):105830. https://doi.org/10.1016/j.jece.2021.105830

    Article  CAS  Google Scholar 

  24. Jing F, Sohi SP, Liu Y, Chen J (2018) Insight into mechanism of aged biochar for adsorption of PAEs: reciprocal effects of ageing and coexisting Cd2+. Environ Pollut 242:1098–1107. https://doi.org/10.1016/j.envpol.2018.07.124

    Article  CAS  PubMed  Google Scholar 

  25. Gao LY, Deng JH, Huang GF, Li K, Cai KZ, Liu Y, Huang F (2019) Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge. Bioresour Technol 272:114–122. https://doi.org/10.1016/j.biortech.2018.09.138

    Article  CAS  PubMed  Google Scholar 

  26. Hu B, Ai Y, Jin J, Hayat T, Alsaedi A, Zhuang L, Wang X (2020) Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2(1):47–64. https://doi.org/10.1007/s42773-020-00044-4

    Article  Google Scholar 

  27. Gao Y, Fang Z, Van Zwieten L, Bolan N, Dong D, Quin BF, Chen W (2022) A critical review of biochar-based nitrogen fertilizers and their effects on crop production and the environment. Biochar 4(1):1–19. https://doi.org/10.1007/s42773-022-00160-3

    Article  Google Scholar 

  28. Leng L, Huang H, Li H, Li J, Zhou W (2019) Biochar stability assessment methods: a review. Sci Total Environ 647:210–222. https://doi.org/10.1016/j.scitotenv.2019.01.298

    Article  CAS  PubMed  Google Scholar 

  29. Khan ZH, Gao M, Qiu W, Islam MS, Song Z (2020) Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere 246:125701. https://doi.org/10.1016/j.chemosphere.2019.125701

    Article  CAS  PubMed  Google Scholar 

  30. Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46(4):406–433. https://doi.org/10.1080/10643389.2015.1096880

    Article  CAS  Google Scholar 

  31. Jeyasubramanian K, Thangagiri B, Sakthivel A, Raja JD, Seenivasan S, Vallinayagam P, Rathika B (2021) A complete review on biochar: production, property, multifaceted applications, interaction mechanism and computational approach. Fuel 292:120243. https://doi.org/10.1016/j.fuel.2021.120243

    Article  CAS  Google Scholar 

  32. Ifthikar J, Wang J, Wang Q, Wang T, Wang H, Khan A, Chen Z (2017) Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications. Bioresour Technol 238:399–406. https://doi.org/10.1016/j.biortech.2017.03.133

    Article  CAS  PubMed  Google Scholar 

  33. Iamsaard K, Weng CH, Yen LT, Tzeng JH, Poonpakdee C, Lin YT (2022) Adsorption of metal on pineapple leaf biochar: key affecting factors, mechanism identification, and regeneration evaluation. Bioresour Technol 344:126131. https://doi.org/10.1016/j.biortech.2021.126131

    Article  CAS  PubMed  Google Scholar 

  34. Gayathri R, Gopinath KP, Kumar PS (2021) Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: application in electroplating industrial wastewater. Chemosphere 262:128031. https://doi.org/10.1016/j.chemosphere.2020.128031

    Article  CAS  PubMed  Google Scholar 

  35. Jia L, Yu Y, Li ZP, Qin SN, Guo JR, Zhang YQ, Jin Y (2021) Study on the HgO removal characteristics and synergistic mechanism of iron-based modified biochar doped with multiple metals. Bioresour Technol 332:125086. https://doi.org/10.1016/j.biortech.2021.125086

    Article  CAS  PubMed  Google Scholar 

  36. Feng Y, Luo Y, He Q, Zhao D, Zhang K, Shen S, Wang F (2021) Performance and mechanism of a biochar-based Ca-La composite for the adsorption of phosphate from water. J Environ Chem Eng 9(3):105267. https://doi.org/10.1016/j.jece.2021.105267

    Article  CAS  Google Scholar 

  37. Guo X, Li M, Liu A, Jiang M, Niu X, Liu X (2020) Adsorption mechanisms and characteristics of Hg2+ removal by different fractions of biochar. Water 12(8):2105. https://doi.org/10.3390/w12082105

    Article  CAS  Google Scholar 

  38. Huang F, Gao LY, Wu RR, Wang H, Xiao RB (2020) Qualitative and quantitative characterization of adsorption mechanisms for Cd2+ by silicon-rich biochar. Sci Total Environ 731:139163. https://doi.org/10.1016/j.scitotenv.2020.139163

    Article  CAS  PubMed  Google Scholar 

  39. Ippolito JA, Cui L, Kammann C, Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizabal T, Borchard N (2020) Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2(4):421–438. https://doi.org/10.1007/s42773-020-00067-x

    Article  Google Scholar 

  40. Kumar M, Dutta S, You S, Luo G, Zhang S, Show PL, Tsang DC (2021) A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. J Clean Prod 305:127143. https://doi.org/10.1016/j.jclepro.2021.127143

    Article  CAS  Google Scholar 

  41. Zhou Y, Qin S, Verma S, Sar T, Sarsaiya S, Ravindran B, Awasthi MK (2021) Production and beneficial impact of biochar for environmental application: a comprehensive review. Bioresour Technol 337:125451. https://doi.org/10.1016/j.biortech.2021.125451

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Liu Y, Zhan W, Zheng K, Wang J, Zhang C, Chen R (2020) Stabilization of heavy metal-contaminated soils by biochar: challenges and recommendations. Sci Total Environ 729:139060. https://doi.org/10.1016/j.scitotenv.2020.139060

    Article  CAS  PubMed  Google Scholar 

  43. Tu C, Wei J, Guan F, Liu Y, Sun Y, Luo Y (2020) Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ Int 137:105576. https://doi.org/10.1016/j.envint.2020.105576

    Article  CAS  PubMed  Google Scholar 

  44. Liu R, Zhang Y, Hu B, Wang H (2022) Improved Pb (II) removal in aqueous solution by sulfide@ biochar and polysaccharose-FeS@ biochar composites: efficiencies and mechanisms. Chemosphere 287:132087. https://doi.org/10.1016/j.chemosphere.2021.132087

    Article  CAS  PubMed  Google Scholar 

  45. Mahdi Z, Yu QJ, El Hanandeh A (2018) Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar. J Environ Chem Eng 6(1):1171–1181. https://doi.org/10.1016/j.jece.2018.01.021

    Article  CAS  Google Scholar 

  46. Wang X, Li X, Liu G, He Y, Chen C, Liu X, Zhao Y (2019) Mixed heavy metal removal from wastewater by using discarded mushroom-stick biochar: adsorption properties and mechanisms. Environ Sci Process Impacts 21(3):584–592. https://doi.org/10.1039/C8EM00457A

    Article  CAS  PubMed  Google Scholar 

  47. Shen Z, Zhang Y, McMillan O, Jin F, Al-Tabbaa A (2017) Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environ Sci Pollut Res 24(14):12809–12819. https://doi.org/10.1007/s11356-017-8847-2

    Article  CAS  Google Scholar 

  48. Kołodyńska D, Krukowska JA, Thomas P (2017) Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem Eng J 307:353–363. https://doi.org/10.1016/j.cej.2016.08.088

    Article  CAS  Google Scholar 

  49. Yuan P, Wang J, Pan Y, Shen B, Wu C (2019) Review of biochar for the management of contaminated soil: preparation, application and prospect. Sci Total Environ 659:473–490. https://doi.org/10.1016/j.scitotenv.2018.12.400

    Article  CAS  PubMed  Google Scholar 

  50. Zhao M, Dai Y, Zhang M, Feng C, Qin B, Zhang W, Qiu R (2020) Mechanisms of Pb and/or Zn adsorption by different biochars: biochar characteristics, stability, and binding energies. Sci Total Environ 717:136894. https://doi.org/10.1016/j.scitotenv.2020.136894

    Article  CAS  PubMed  Google Scholar 

  51. Teng D, Zhang B, Xu G, Wang B, Mao K, Wang J, Zhang H (2020) Efficient removal of Cd (II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms. Environ Pollut 265:115001. https://doi.org/10.1016/j.envpol.2020.115001

    Article  CAS  PubMed  Google Scholar 

  52. Liu P, Rao D, Zou L, Teng Y, Yu H (2021) Capacity and potential mechanisms of Cd (II) adsorption from aqueous solution by blue algae-derived biochars. Sci Total Environ 767:145447. https://doi.org/10.1016/j.scitotenv.2021.145447

    Article  CAS  PubMed  Google Scholar 

  53. Wu J, Wang T, Zhang Y, Pan WP (2019) The distribution of Pb (II)/Cd (II) adsorption mechanisms on biochars from aqueous solution: considering the increased oxygen functional groups by HCl treatment. Bioresour Technol 291:121859. https://doi.org/10.1016/j.biortech.2019.121859

    Article  CAS  PubMed  Google Scholar 

  54. Li AY, Deng H, Jiang YH, Ye CH, Yu BG, Zhou XL, Ma AY (2020) Superefficient removal of heavy metals from wastewater by Mg-loaded biochars: adsorption characteristics and removal mechanisms. Langmuir 36(31):9160–9174. https://doi.org/10.1021/acs.langmuir.0c01454

    Article  CAS  PubMed  Google Scholar 

  55. Zhu L, Tong L, Zhao N, Wang X, Yang X, Lv Y (2020) Key factors and microscopic mechanisms controlling adsorption of cadmium by surface oxidized and aminated biochars. J Hazard Mater 382:121002. https://doi.org/10.1016/j.jhazmat.2019.121002

    Article  CAS  PubMed  Google Scholar 

  56. Zhang A, Li X, Xing J, Xu G (2020) Adsorption of potentially toxic elements in water by modified biochar: a review. J Environ Chem Eng 8(4):104196. https://doi.org/10.1016/j.jece.2020.104196

    Article  CAS  Google Scholar 

  57. Fu X, Song X, Zheng Q, Liu C, Li K, Luo Q, Luo J (2022) Frontier materials for adsorption of antimony and arsenic in aqueous environments: a review. Int J Environ Res Public Health 19(17):10824. https://doi.org/10.3390/ijerph191710824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta S, Sireesha S, Sreedhar I, Patel CM, Anitha KL (2020) Latest trends in heavy metal removal from wastewater by biochar-based sorbents. J Water Process Eng 38:101561. https://doi.org/10.1016/j.jwpe.2020.101561

    Article  Google Scholar 

  59. Mandal A, Kumar A, Singh N (2021) Sorption mechanisms of pesticides removal from effluent matrix using biochar: conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments. J Environ Manage 295:113104. https://doi.org/10.1016/j.jenvman.2021.113104

    Article  CAS  PubMed  Google Scholar 

  60. Hopkins D, Hawboldt K (2020) Biochar for the removal of metals from solution: a review of lignocellulosic and novel marine feedstocks. J Environ Chem Eng 8(4):103975. https://doi.org/10.1016/j.jece.2020.103975

    Article  CAS  Google Scholar 

  61. Zhang X, Fu W, Yin Y, Chen Z, Qiu R, Simonnot MO, Wang X (2018) Adsorption-reduction removal of Cr (VI) by tobacco petiole pyrolytic biochar: batch experiment, kinetic and mechanism studies. Bioresour Technol 268:149–157. https://doi.org/10.1016/j.biortech.2018.07.125

    Article  CAS  PubMed  Google Scholar 

  62. Goh CL, Sethupathi S, Bashir MJ, Ahmed W (2019) Adsorptive behaviour of palm oil mill sludge biochar pyrolyzed at low temperature for copper and cadmium removal. J Environ Manage 237:281–288. https://doi.org/10.1016/j.jenvman.2018.12.103

    Article  CAS  PubMed  Google Scholar 

  63. Hassan MM, Haleem N, Baig MA, Jamal Y (2020) Phytoaccumulation of heavy metals from municipal solid waste leachate using different grasses under hydroponic condition. Sci Rep 10(1):1–8. https://doi.org/10.1038/s41598-020-72800-2

    Article  CAS  Google Scholar 

  64. Khan AA, Gul J, Naqvi SR, Ali I, Farooq W, Liaqat R, Juchelková D (2022) Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Chemosphere 135565.https://doi.org/10.1016/j.chemosphere.2022.135565

  65. Chen G, Sun B, Li J, Lin F, Xiang L, Yan B (2022) Products distribution and pollutants releasing characteristics during pyrolysis of waste tires under different thermal process. J Hazard Mater 424:127351. https://doi.org/10.1016/j.jhazmat.2021.127351

    Article  CAS  PubMed  Google Scholar 

  66. Kim JE, Bhatia SK, Song HJ, Yoo E, Jeon HJ, Yoon JY, Choi YK (2020) Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar. Bioresour Technol 306:123092. https://doi.org/10.1016/j.biortech.2020.123092

    Article  CAS  PubMed  Google Scholar 

  67. Do Minh T, Song J, Deb A, Cha L, Srivastava V, Sillanpää M (2020) Biochar based catalysts for the abatement of emerging pollutants: a review. Chem Eng J 394:124856. https://doi.org/10.1016/j.cej.2020.124856

    Article  CAS  Google Scholar 

  68. Mahmoud ME, Abou-Ali SA, Elweshahy SM (2021) Efficient and ultrafast removal of Cd (II) and Sm (III) from water by leaves of Cynara scolymus derived biochar. Mater Res Bull 141:111334. https://doi.org/10.1016/j.materresbull.2021.111334

    Article  CAS  Google Scholar 

  69. Harisankar S, Mohan RV, Choudhary V, Vinu R (2022) Effect of water quality on the yield and quality of the products from hydrothermal liquefaction and carbonization of rice straw. Bioresour Technol 351:127031. https://doi.org/10.1016/j.biortech.2022.127031

    Article  CAS  PubMed  Google Scholar 

  70. Nair V, Vinu R (2016) Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater. Bioresour Technol 216:511–519. https://doi.org/10.1016/j.biortech.2016.05.070

    Article  CAS  PubMed  Google Scholar 

  71. Witecki K, Polowczyk I, Kowalczuk PB (2022) Chemistry of wastewater circuits in mineral processing industry—a review. J Water Process Eng 45:102509. https://doi.org/10.1016/j.jwpe.2021.102509

    Article  Google Scholar 

  72. Khan ZH, Gao M, Qiu W, Song Z (2020) Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution. Chemosphere 255:126995. https://doi.org/10.1016/j.chemosphere.2020.126995

    Article  CAS  PubMed  Google Scholar 

  73. Kumar M, Xiong X, Sun Y, Yu IK, Tsang DC, Hou D, Pandey A (2020) Critical review on biochar-supported catalysts for pollutant degradation and sustainable biorefinery. Adv Sustain Syst 4(10):1900149. https://doi.org/10.1002/adsu.201900149

    Article  CAS  Google Scholar 

  74. Li H, Dong X, Da Silva EB, De Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072

    Article  CAS  PubMed  Google Scholar 

  75. Peng H, Gao P, Chu G, Pan B, Peng J, Xing B (2017) Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853. https://doi.org/10.1016/j.envpol.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  76. Li M, Wei D, Liu T, Liu Y, Yan L, Wei Q, Xu W (2019) EDTA functionalized magnetic biochar for Pb (II) removal: adsorption performance, mechanism and SVM model prediction. Sep Purif Technol 227:115696. https://doi.org/10.1016/j.seppur.2019.115696

    Article  CAS  Google Scholar 

  77. Li X, Wang C, Zhang J, Liu J, Liu B, Chen G (2020) Preparation and application of magnetic biochar in water treatment: a critical review. Sci Total Environ 711:134847. https://doi.org/10.1016/j.scitotenv.2019.134847

    Article  CAS  PubMed  Google Scholar 

  78. Liang J, Li X, Yu Z, Zeng G, Luo Y, Jiang L, Wu H (2017) Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb (II) and Cd (II). ACS Sustain Chem Eng 5(6):5049–5058. https://doi.org/10.1021/acssuschemeng.7b00434

    Article  CAS  Google Scholar 

  79. Liang L, Xi F, Tan W, Meng X, Hu B, Wang X (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3(3):255–281. https://doi.org/10.1007/s42773-021-00101-6

    Article  CAS  Google Scholar 

  80. Nidheesh PV, Gopinath A, Ranjith N, Akre AP, Sreedharan V, Kumar MS (2021) Potential role of biochar in advanced oxidation processes: a sustainable approach. Chem Eng J 405:126582. https://doi.org/10.1016/j.cej.2020.126582

    Article  CAS  Google Scholar 

  81. Qiu B, Tao X, Wang H, Li W, Ding X, Chu H (2021) Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. J Anal Appl Pyrolysis 155:105081. https://doi.org/10.1016/j.jaap.2021.105081

    Article  CAS  Google Scholar 

  82. Shaaban M, Van Zwieten L, Bashir S, Younas A, Núñez-Delgado A, Chhajro MA, Hu R (2018) A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J Environ Manage 228:429–440. https://doi.org/10.1016/j.jenvman.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  83. Shakoor MB, Ali S, Rizwan M, Abbas F, Bibi I, Riaz M, Rinklebe J (2020) A review of biochar-based sorbents for separation of heavy metals from water. Int J Phytoremediation 22(2):111–126. https://doi.org/10.1080/15226514.2019.1647405

    Article  CAS  PubMed  Google Scholar 

  84. Shan R, Shi Y, Gu J, Wang Y, Yuan H (2020) Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chin J Chem Eng 28(5):1375–1383. https://doi.org/10.1016/j.cjche.2020.02.012

    Article  CAS  Google Scholar 

  85. Shen Z, Hou D, Jin F, Shi J, Fan X, Tsang DC, Alessi DS (2019) Effect of production temperature on lead removal mechanisms by rice straw biochars. Sci Total Environ 655:751–758. https://doi.org/10.1016/j.scitotenv.2018.11.282

    Article  CAS  PubMed  Google Scholar 

  86. Shen Z, Zhang Y, Jin F, McMillan O, Al-Tabbaa A (2017) Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Sci Total Environ 609:1401–1410. https://doi.org/10.1016/j.scitotenv.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  87. Silos-Llamas AK, Durán-Jiménez G, Hernández-Montoya V, Montes-Morán MA, Rangel-Vázquez NA (2020) Understanding the adsorption of heavy metals on oxygen-rich biochars by using molecular simulation. J Mol Liq 298:112069. https://doi.org/10.1016/j.molliq.2019.112069

    Article  CAS  Google Scholar 

  88. Wang D, Jiang P, Zhang H, Yuan W (2020) Biochar production and applications in agro and forestry systems: a review. Sci Total Environ 723:137775. https://doi.org/10.1016/j.scitotenv.2020.137775

    Article  CAS  PubMed  Google Scholar 

  89. Wang L, O’Connor D, Rinklebe J, Ok YS, Tsang DC, Shen Z, Hou D (2020) Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications. Environ Sci Technol 54(23):14797–14814. https://doi.org/10.1021/acs.est.0c04033

    Article  CAS  PubMed  Google Scholar 

  90. Wang L, Wang Y, Ma F, Tankpa V, Bai S, Guo X, Wang X (2019) Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review. Sci Total Environ 668:1298–1309. https://doi.org/10.1016/j.scitotenv.2019.03.011

    Article  CAS  PubMed  Google Scholar 

  91. Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, Zeng GM, Luo H (2018) Investigating the adsorption behaviour and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresour Technol 261:265–271. https://doi.org/10.1016/j.biortech.2018.04.032

    Article  CAS  PubMed  Google Scholar 

  92. Wang Z, Li T, Liu D, Fu Q, Hou R, Li Q, Li M (2021) Research on the adsorption mechanism of Cu and Zn by biochar under freeze-thaw conditions. Sc Total Environ 774:145194. https://doi.org/10.1016/j.scitotenv.2021.145194

    Article  CAS  Google Scholar 

  93. Wu J, Huang D, Liu X, Meng J, Tang C, Xu J (2018) Remediation of As (III) and Cd (II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J Hazard Mater 348:10–19. https://doi.org/10.1016/j.jhazmat.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  94. Xiang W, Zhang X, Chen J, Zou W, He F, Hu X, Gao B (2020) Biochar technology in wastewater treatment: a critical review. Chemosphere 252:126539. https://doi.org/10.1016/j.chemosphere.2020.126539

    Article  CAS  PubMed  Google Scholar 

  95. Xie J, Lin R, Liang Z, Zhao Z, Yang C, Cui F (2021) Effect of cations on the enhanced adsorption of cationic dye in Fe3O4-loaded biochar and mechanism. J Environ Chem Eng 9(4):105744. https://doi.org/10.1016/j.jece.2021.105744

    Article  CAS  Google Scholar 

  96. Xue C, Zhu L, Lei S, Liu M, Hong C, Che L, Qiu Y (2020) Lead competition alters the zinc adsorption mechanism on animal-derived biochar. Sci Total Environ 713:136395. https://doi.org/10.1016/j.scitotenv.2019.136395

    Article  CAS  PubMed  Google Scholar 

  97. Yaashikaa PR, Kumar PS, Varjani S, Saravanan A (2020) A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Rep 28:00570. https://doi.org/10.1016/j.btre.2020.e00570

    Article  Google Scholar 

  98. Yi Y, Huang Z, Lu B, Xian J, Tsang EP, Cheng W, Fang Z (2020) Magnetic biochar for environmental remediation: a review. Bioresour Technol 298:122468. https://doi.org/10.1016/j.biortech.2019.122468

    Article  CAS  PubMed  Google Scholar 

  99. Yu H, Liu J, Shen J, Sun X, Li J, Wang L (2016) Preparation of MnOx-loaded biochar for Pb2+ removal: adsorption performance and possible mechanism. J Taiwan Inst Chem Eng 66:313–320. https://doi.org/10.1016/j.jtice.2016.07.010

    Article  CAS  Google Scholar 

  100. Yuan S, Hong M, Li H, Ye Z, Gong H, Zhang J, Tan Z (2020) Contributions and mechanisms of components in modified biochar to adsorb cadmium in aqueous solution. Sci Total Environ 733:139320. https://doi.org/10.1016/j.scitotenv.2020.139320

    Article  CAS  PubMed  Google Scholar 

  101. Zhang C, Liu L, Zhao M, Rong H, Xu Y (2018) The environmental characteristics and applications of biochar. Environ Sci Pollut Res 25(22):21525–21534. https://doi.org/10.1007/s11356-018-2521-1

    Article  CAS  Google Scholar 

  102. Zhang H, Xu F, Xue J, Chen S, Wang J, Yang Y (2020) Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism. Sci Rep 10(1):1–13. https://doi.org/10.1038/s41598-020-63000-z

    Article  CAS  Google Scholar 

  103. Zhang P, Zhang X, Yuan X, Xie R, Han L (2021) Characteristics, adsorption behaviours, Cu (II) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures. Bioresour Technol 331:125013. https://doi.org/10.1016/j.biortech.2021.125013

    Article  CAS  PubMed  Google Scholar 

  104. Zhang Z, Zhu Z, Shen B, Liu L (2019) Insights into biochar and hydrochar production and applications: a review. Energy 171:581–598. https://doi.org/10.1016/j.energy.2019.01.035

    Article  CAS  Google Scholar 

  105. Zhao C, Wang B, Theng BK, Wu P, Liu F, Wang S, Zhang X (2021) Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: a review. Sci Total Environ 767:145305. https://doi.org/10.1016/j.scitotenv.2021.145305

    Article  CAS  PubMed  Google Scholar 

  106. Zhao J, Shen XJ, Domene X, Alcañiz JM, Liao X, Palet C (2019) Comparison of biochars derived from different types of feedstocks and their potential for heavy metal removal in multiple-metal solutions. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-46234-4

    Article  CAS  Google Scholar 

  107. Zhao N, Zhao C, Lv Y, Zhang W, Du Y, Hao Z, Zhang J (2017) Adsorption and co-adsorption mechanisms of Cr (VI) and organic contaminants on H3PO4 treated biochar. Chemosphere 186:422–429. https://doi.org/10.1016/j.chemosphere.2017.08.016

    Article  CAS  PubMed  Google Scholar 

  108. Zhou X, Zhu Y, Niu Q, Zeng G, Lai C, Liu S, Liu J (2021) New notion of biochar: a review on the mechanism of biochar applications in advanced oxidation processes. Chem Eng J 416:129027. https://doi.org/10.1016/j.cej.2021.129027

    Article  CAS  Google Scholar 

  109. Misran E, Bani O, Situmeang EM, Purba AS (2022) Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: isotherm, kinetics, and reusability. Alex Eng J 61(3):1946–1955. https://doi.org/10.1016/j.aej.2021.07.022

    Article  Google Scholar 

  110. Malik DS, Jain CK, Yadav AK (2017) Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl Water Sci 7(5):2113–2136. https://doi.org/10.1007/s13201-016-0401-8

    Article  CAS  Google Scholar 

  111. Okoro HK, Pandey S, Ogunkunle CO, Ngila CJ, Zvinowanda C, Jimoh I, Adeniyi AG (2022) Nanomaterial-based biosorbents: adsorbent for efficient removal of selected organic pollutants from industrial wastewater. Emerg Contam 8:46–58. https://doi.org/10.1016/j.emcon.2021.12.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Uplabdhi Tyagi: literature collection, interpretation of data, and writing of manuscript. Neeru Anand: principal investigator and conceptualization.

Corresponding author

Correspondence to Neeru Anand.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, U., Anand, N. Prospective of Waste Lignocellulosic Biomass as Precursors for the Production of Biochar: Application, Performance, and Mechanism—A Review. Bioenerg. Res. 16, 1335–1360 (2023). https://doi.org/10.1007/s12155-022-10560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10560-9

Keywords

Navigation