Skip to main content

Advertisement

Log in

Life Cycle Assessment of Biomass Pyrolysis

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biomass is a renewable source of bioenergy, making it a promising solution for reducing greenhouse gas (GHG) emissions. Biomass is converted into bioenergy by the thermochemical and biological routes. Among all thermochemical conversion processes, pyrolysis is the most popular due to its ease of operation. Temperature, gas residence time, particle size, and heating rate are important operating parameters in pyrolysis. Bio-oil, biochar, and syngas are the main products from pyrolysis, and by giving suitable upgrading treatment, these products are converted into value-added products. The impact of pyrolysis on the environment is assessed using the life cycle assessment (LCA) tool. This review critically examines the reported literature for the goal and scope of the study, and boundaries are chosen, the process including pretreatment and product upgrading. Most researchers have recommended using biomass for bioenergy production instead of fossil fuel to reduce the impact. The most commonly used software is SimaPro, followed by GaBi, while the commonly chosen boundary is cradle-to-grave, and global warming potential is the most studied impact category. The life cycle impacts due to pyrolysis and pretreatment have been evaluated in this study. Impact variations due to alteration in energy (electricity) sources have also been gauged by undertaking different scenarios. The pyrolysis unit and bio-oil combustion unit are the main contributors (> 30%) of GHG emissions. The topics that were not covered in previous reviews, like environmental impact due to pretreatment and product upgrading, are deliberated in detail in this paper. The potential of biochar as a negative emission technology has also been discussed. Based on the reported work, the gaps are identified, and future research opportunities are presented.

Highlights

1. LCA of pretreatment using data from reference sources and analysis.

2. Impact due to product upgradation is deliberated in this review paper.

3. Scenario analysis for electricity source substitution.

4. New (novel) methods of pyrolysis.

5. Introduction to negative emission technology.

AbstractSection Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ADP:

Abiotic depletion potential

AP:

Acidification potential

AQP:

Aquatic potential

DCB:

Dichlorobenzene

EP:

Eutrophication potential

FEI:

Net fossil energy input

GER:

Gross energy requirement

GHG:

Greenhouse gas

GWP:

Global warming potential

HRE:

Human respiratory effects

LCA:

Life cycle assessment

MAP:

Microwave-assisted pyrolysis

NRED:

Non-renewable energy demand

ODP:

Ozone depletion potential

POF:

Photo-oxidant formation

RD:

Resource depletion

SFP:

Smog formation potential

TP:

Toxicity potential

References

  1. Gholizadeh M, Hu X, Liu Q (2019) A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses. Renew Sustain Energy Rev 114. https://doi.org/10.1016/j.rser.2019.109313

  2. Patel M, Zhang X, Kumar A (2016) Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies : a review. Renew Sustain Energy Rev 53:1486–1499. https://doi.org/10.1016/j.rser.2015.09.070

    Article  CAS  Google Scholar 

  3. Vienescu DN, Wang J, Nixon JD (2017) A life cycle assessment of options for producing synthetic fuel via pyrolysis. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.10.069

    Article  PubMed  Google Scholar 

  4. Heng L, Zhang H, Xiao J, Xiao R (2018) Life cycle assessment of polyol fuel from corn stover via fast pyrolysis and upgrading. ACS Sustain Chem Eng 6:2733–2740. https://doi.org/10.1021/acssuschemeng.7b04378

    Article  CAS  Google Scholar 

  5. Wang J, You S, Lu Z et al (2020) Bioresource technology life cycle assessment of bio-based levoglucosan production from cotton straw through fast pyrolysis. Bioresour Technol 307:123179. https://doi.org/10.1016/j.biortech.2020.123179

    Article  CAS  PubMed  Google Scholar 

  6. Ubando AT, Rivera DRT, Chen WH, Culaba AB (2019) A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Bioresour Technol 291:121837. https://doi.org/10.1016/j.biortech.2019.121837

    Article  CAS  PubMed  Google Scholar 

  7. Righi S, Bandini V, Marazza D et al (2016) Bioresource technology life cycle assessment of high ligno-cellulosic biomass pyrolysis coupled with anaerobic digestion. Bioresour Technol 212:245–253. https://doi.org/10.1016/j.biortech.2016.04.052

    Article  CAS  PubMed  Google Scholar 

  8. Sharma N, Kalra KL, Oberoi HS, Bansal S (2007) Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian J Microbiol 47:310–316. https://doi.org/10.1007/s12088-007-0057-z

    Article  CAS  PubMed  Google Scholar 

  9. Khanna S, Goyal A, Moholkar VS (2013) Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized clostridium pasteurianum: an optimization study. Prep Biochem Biotechnol 43:828–847. https://doi.org/10.1080/10826068.2013.805625

    Article  CAS  PubMed  Google Scholar 

  10. Bridgwater T (2006) Review biomass for energy. J Sci Food Agric 86:1755–1768. https://doi.org/10.1002/jsfa.2605

    Article  CAS  Google Scholar 

  11. Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis- a technological review. Energies 5:4952–5001. https://doi.org/10.3390/en5124952

    Article  CAS  Google Scholar 

  12. Roos CJ (2010) Clean heat and power using biomass gasification for industrial and agricultural projects. US Department of Energy, Northwest CHP Application Center 1–64. 3165

  13. Dhyani V, Bhaskar T (2019) Pyrolysis of biomass *. 217–244. https://doi.org/10.1016/B978-0-12-816856-1.00009-9

  14. Fahmy TYA, Fahmy Y, Mobarak F et al (2020) Biomass pyrolysis: past, present, and future. Environ Dev Sustain 22:17–32. https://doi.org/10.1007/s10668-018-0200-5

    Article  Google Scholar 

  15. Ethaib S, Omar R, Kamal SMM et al (2020) Microwave-assisted pyrolysis of biomass waste: a mini review. Processes 8:1–17. https://doi.org/10.3390/PR8091190

    Article  Google Scholar 

  16. Shahbaz M, AlNouss A, Parthasarathy P et al (2020) Investigation of biomass components on the slow pyrolysis products yield using Aspen Plus for techno-economic analysis. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01040-1

    Article  Google Scholar 

  17. Wang G, Li W, Li B, Chen H (2008) TG study on pyrolysis of biomass and its three components under syngas. Fuel 87:552–558. https://doi.org/10.1016/j.fuel.2007.02.032

    Article  CAS  Google Scholar 

  18. Yang H, Yan R, Chen H et al (2006) Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Process Technol 87:935–942. https://doi.org/10.1016/j.fuproc.2006.07.001

    Article  CAS  Google Scholar 

  19. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

    Article  CAS  Google Scholar 

  20. Qu T, Gao W, Shen L et al (2011) Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manag 50:10424–10433. https://doi.org/10.1021/ie1025453

    Article  CAS  Google Scholar 

  21. Minkova V, Razvigorova M, Bjornbom E et al (2001) Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass. Fuel Process Technol 70:53–61. https://doi.org/10.1016/S0378-3820(00)00153-3

    Article  CAS  Google Scholar 

  22. Wang S, Guo X, Wang K, Luo Z (2011) Influence of the interaction of components on the pyrolysis behavior of biomass. J Anal Appl Pyrolysis 91:183–189. https://doi.org/10.1016/j.jaap.2011.02.006

    Article  CAS  Google Scholar 

  23. Wang L, Ok YS, Tsang DCW et al (2020) New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag 36:358–386. https://doi.org/10.1111/sum.12592

    Article  Google Scholar 

  24. Zhang Y, Chen P, Liu S et al (2017) Microwave‐assisted pyrolysis of biomass for bio‐oil production. In: Pyrolysis. InTech , pp 129–166. https://doi.org/10.5772/67442

  25. Chen P et al (2015) Microwave-assisted thermochemical conversion of biomass for biofuel production. In: Fang Z, Smith Jr R, Qi X (eds) Production of biofuels and chemicals with microwave. Biofuels and Biorefineries, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9612-5_5

  26. Santhoshkumar A, Ramanathan A (2019) Energy and life cycle assessment of solar assisted microwave pyrolysis of waste biomass. IOP Conf Ser Earth Environ Sci 312. https://doi.org/10.1088/1755-1315/312/1/012017

  27. Nhuchhen DR, Afzal MT, Dreise T, Salema AA (2018) Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass Bioenerg 119:293–303. https://doi.org/10.1016/j.biombioe.2018.09.035

    Article  CAS  Google Scholar 

  28. Zanzi R, Bai X, Capdevila P, Björnbom E (2001) Pyrolysis of biomass in presence of steam for preparation of activated carbon, liquid and gaseous products. 6th World Congress of Chemical Engineering Melbourne, Australia 23-27 September 2001, pp 1–10

  29. Sasaki T, Sone T, Koyama H, Yamaguchi H (2009) Steam-assisted pyrolysis system for decontamination and volume reduction of radioactive organic waste. J Nucl Sci Technol 46:232–238. https://doi.org/10.1080/18811248.2007.9711526

    Article  CAS  Google Scholar 

  30. Önal EP, Uzun BB, Pütün AE (2011) Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process Technol 92:879–885. https://doi.org/10.1016/j.fuproc.2010.12.006

    Article  CAS  Google Scholar 

  31. Libra JA, Ro KS, Kammann C et al (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. https://doi.org/10.4155/bfs.10.81

    Article  CAS  Google Scholar 

  32. Zhou N, Wang Y, Huang L et al (2019) In situ modification provided by a novel wet pyrolysis system to enhance surface properties of biochar for lead immobilization. Colloids Surfaces A 570:39–47. https://doi.org/10.1016/j.colsurfa.2019.03.012

    Article  CAS  Google Scholar 

  33. Chen W, Li K, Xia M et al (2018) Influence of NH3 concentration on biomass nitrogen-enriched pyrolysis. Bioresour Technol 263:350–357. https://doi.org/10.1016/j.biortech.2018.05.025

    Article  CAS  PubMed  Google Scholar 

  34. Mian MM, Liu G, Yousaf B et al (2018) Simultaneous functionalization and magnetization of biochar via NH3 ambiance pyrolysis for efficient removal of Cr (VI). Chemosphere 208:712–721. https://doi.org/10.1016/j.chemosphere.2018.06.021

    Article  CAS  PubMed  Google Scholar 

  35. Abnisa F, Wan Daud WMA (2014) A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manag 87:71–85. https://doi.org/10.1016/j.enconman.2014.07.007

    Article  CAS  Google Scholar 

  36. Lee SY, Choi JW, Song KG, et al (2019) Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis. Compos Part B Eng 176. https://doi.org/10.1016/j.compositesb.2019.107209

  37. Wu F, Ben H, Yang Y, et al (2020) Effects of different conditions on co-pyrolysis behavior of corn stover and polypropylene. Polymers (Basel) 12. https://doi.org/10.3390/POLYM12040973

  38. An X, Wu Z, Yu J et al (2020) Copyrolysis of biomass, bentonite, and nutrients as a new strategy for the synthesis of improved biochar-based slow-release fertilizers. ACS Sustain Chem Eng 8:3181–3190. https://doi.org/10.1021/acssuschemeng.9b06483

    Article  CAS  Google Scholar 

  39. Pennington DW, Potting J, Finnveden G et al (2004) Life cycle assessment. Part 2: Current impact assessment practice. Environ Int 30:721–739. https://doi.org/10.1016/j.envint.2003.12.009

    Article  CAS  PubMed  Google Scholar 

  40. Peters J, Iribarren D, Dufour J (2015) Biomass pyrolysis for biochar or energy applications ? A life cycle. https://doi.org/10.1021/es5060786

    Article  Google Scholar 

  41. Herng Y, Raymond C, Suzana RT et al (2016) Comparative life cycle assessment ( LCA ) of bio-oil production from fast pyrolysis and hydrothermal liquefaction of oil palm empty fruit bunch ( EFB ). Clean Technol Environ Policy 18:1759–1768. https://doi.org/10.1007/s10098-016-1172-5

    Article  CAS  Google Scholar 

  42. Dang Q, Yu C, Luo Z (2022) Environmental life cycle assessment of bio-fuel production via fast pyrolysis of corn stover and hydroprocessing. Fuel 131:36–42. https://doi.org/10.1016/j.fuel.2014.04.029

    Article  CAS  Google Scholar 

  43. Han J, Elgowainy A, Dunn JB, Wang MQ (2022) Life cycle analysis of fuel production from fast pyrolysis of biomass. Bioresour Technol 133:421–428. https://doi.org/10.1016/j.biortech.2013.01.141

    Article  CAS  Google Scholar 

  44. Fan J, Kalnes TN, Alward M et al (2011) Life cycle assessment of electricity generation using fast pyrolysis bio-oil. Renew Energy 36:632–641. https://doi.org/10.1016/j.renene.2010.06.045

    Article  CAS  Google Scholar 

  45. Zhong ZW, Song B, Zaki MBM (2010) Life-cycle assessment of flash pyrolysis of wood waste. J Clean Prod 18:1177–1183. https://doi.org/10.1016/j.jclepro.2010.03.017

    Article  CAS  Google Scholar 

  46. Moreno J, Dufour J (2012) Life cycle assessment of hydrogen production from biomass gasification. Evaluation of different Spanish feedstocks. Int J Hydrogen Energy 38:7616–7622. https://doi.org/10.1016/j.ijhydene.2012.11.076

    Article  CAS  Google Scholar 

  47. Steele P, Puettmann ME, Penmetsa VK, Cooper JE (2012) Life-cycle assessment of pyrolysis bio-oil production. For Prod J 62(4):326–334

  48. Mirkouei A, Sessions J, Haapala KR, Murthy GS (2016) Reducing greenhouse gas emissions for sustainable bio-oil production using a mixed supply chain. Proc ASME Des Eng Tech Conf 4. https://doi.org/10.1115/DETC2016-59262.pdf

  49. Peters JF, Iribarren D, Dufour J (2015) Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel 139:441–456. https://doi.org/10.1016/j.fuel.2014.09.014

    Article  CAS  Google Scholar 

  50. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, ... De Bruijn H (2001) Life cycle assessment; an operational guide to the ISO standards, Ministry of Housing , Spatial Planning and the Environment (VROM) and Centre of Environmental Science - Leiden University (CML)

  51. Goedkoop M, Spriensma R (2001) The Eco-indicator 99 - a damage oriented method for life cycle impact assessment; Methodology Report. Amersfoort, Netherlands

  52. Houghton JT, Ding Y, Griggs DJ , Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis, intergovernmental panel on climate change, Press Syndicate of the University of Cambridge

  53. Huijbregts M, Steinmann ZJN, Elshout PMFM et al (2016) ReCiPe 2016 - a harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: characterization. Int J Life Cycle Assess (2017) 22:138–147. https://doi.org/10.1007/s11367-016-1246-y

  54. Jolliet O, Margni M, Charles R et al (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330. https://doi.org/10.1007/BF02978505

    Article  Google Scholar 

  55. Rosenbaum RK, Bachmann TM, Jolliet O, et al (2008) USEtox — the UNEP-SETAC toxicity model : recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 532–546. https://doi.org/10.1007/s11367-008-0038-4

  56. Baitz M, Colodel CM, Kupfer T, Florin J, Schuller O, Kokborg M, Köhler A, Thylmann D, Stof-fregen A, Schöll S, Görke J, Rudolf M, Gonzalez M (2016) GaBi database & modelling principles 2016. thinkstep AG

  57. Nguyen TLT, Hermansen JE, Mogensen L (2013) Environmental performance of crop residues as an energy source for electricity production : the case of wheat straw in Denmark. Appl Energy 104:633–641. https://doi.org/10.1016/j.apenergy.2012.11.057

    Article  CAS  Google Scholar 

  58. Sebastián F, Royo J, Gómez M (2011) Cofiring versus biomass-fired power plants: GHG (greenhouse gases) emissions savings comparison by means of LCA (life cycle assessment) methodology. Energy 36:2029–2037. https://doi.org/10.1016/j.energy.2010.06.003

    Article  Google Scholar 

  59. Wang X, Guo F, Li Y, Yang X (2017) Effect of pretreatment on microalgae pyrolysis: kinetics, biocrude yield and quality, and life cycle assessment. Energy Convers Manag 132:161–171. https://doi.org/10.1016/j.enconman.2016.11.006

    Article  CAS  Google Scholar 

  60. Alvarez-Chavez BJ, Godbout S, Palacios-Rios JH et al (2019) Physical, chemical, thermal and biological pre-treatment technologies in fast pyrolysis to maximize bio-oil quality: a critical review. Biomass Bioenerg 128:105333. https://doi.org/10.1016/j.biombioe.2019.105333

    Article  CAS  Google Scholar 

  61. Han D, Yang X, Li R, Wu Y (2019) Environmental impact comparison of typical and resource-ef fi cient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. J Clean Prod 231:254–267. https://doi.org/10.1016/j.jclepro.2019.05.094

    Article  Google Scholar 

  62. Stover C, Wang H, Srinivasan R, Yu F (2012) Effect of acid , steam explosion , and size reduction pretreatments on bio-oil production from sweetgum 285–297. https://doi.org/10.1007/s12010-012-9678-8

  63. Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812–1822. https://doi.org/10.1016/0016-2361(95)80013-8

    Article  CAS  Google Scholar 

  64. Brassard P, Godbout S, Pelletier F et al (2018) Biomass and bioenergy pyrolysis of switchgrass in an auger reactor for biochar production : a greenhouse gas and energy impacts assessment. Biomass Bioenerg 116:99–105. https://doi.org/10.1016/j.biombioe.2018.06.007

    Article  CAS  Google Scholar 

  65. Zhang S, Yang X, Zhang H et al (2019) Liquefaction of biomass and upgrading of bio-oil: a review. Molecules 24:1–30. https://doi.org/10.3390/molecules24122250

    Article  CAS  Google Scholar 

  66. Sorunmu Y, Billen P, Spatari S (2020) A review of thermochemical upgrading of pyrolysis bio-oil: techno-economic analysis, life cycle assessment, and technology readiness. GCB Bioenergy 12:4–18. https://doi.org/10.1111/gcbb.12658

    Article  CAS  Google Scholar 

  67. Iisa K, French RJ, Orton KA et al (2017) Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating. Fuel 207:413–422. https://doi.org/10.1016/j.fuel.2017.06.098

  68. Cheng F, Luo H, Colosi LM (2020) Slow pyrolysis as a platform for negative emissions technology: an integration of machine learning models, life cycle assessment, and economic analysis. Energy Convers Manag 223:113258. https://doi.org/10.1016/j.enconman.2020.113258

    Article  CAS  Google Scholar 

  69. Ong SH, Tan RR, Andiappan V (2021) Optimisation of biochar-based supply chains for negative emissions and resource savings in carbon management networks. Clean Technol Environ Policy 23:621–638. https://doi.org/10.1007/s10098-020-01990-0

    Article  Google Scholar 

Download references

Funding

The authors are thankful to DST for research funding (DST/ TDT/ WMT/ 2019/ 32).

Author information

Authors and Affiliations

Authors

Contributions

Dipali Gahane: investigation, methodology, writing—original draft preparation. Divyajyoti Biswal: editing manuscript and methodology. Sachin Mandavgane: supervision, conceptualization and editing manuscript, and funding.

Corresponding author

Correspondence to Sachin A. Mandavgane.

Ethics declarations

Ethics Approval

Ethics approval is not applicable.

Consent to Participate and Consent for Publication

All authors read, reviewed, and approved the final manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahane, D., Biswal, D. & Mandavgane, S.A. Life Cycle Assessment of Biomass Pyrolysis. Bioenerg. Res. 15, 1387–1406 (2022). https://doi.org/10.1007/s12155-022-10390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10390-9

Keywords

Navigation