Skip to main content
Log in

Test–retest reproducibility of dopamine transporter density measured with [18F]FP-CIT PET in patients with essential tremor and Parkinson’s disease

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

18F-labeled fluoropropyl-carbomethoxylodopropyl-nor-ß-tropane ([18F]FP-CIT) positron emission tomography (PET) is a useful tool for evaluating disease progression in Parkinson’s disease (PD) patients. We evaluated the test–retest reproducibility of [18F]FP-CIT PET measures in essential tremor (ET) and PD patients.

Methods

Fifteen ET (68.9 ± 6.6 years) and 10 PD patients (70.5 ± 6.3 years; Hoehn and Yahr stage, 2.3 ± 0.8) underwent two [18F]FP-CIT PET/CT scans with an interval of 48 ± 7 day. For both the test and retest studies, standardized uptake value ratios were estimated for 90-min and 3-h acquisitions for the caudate, anterior putamen, and posterior putamen using T1-MRI-based normalization (automatic) and fixed-VOI (manual) methods, with the occipital lobe as a reference. Reproducibility was evaluated by the bias, variability, percent test–retest, within-subject coefficient of variation, repeatability coefficient, and intraclass correlation coefficient (ICC).

Results

Reproducibility was excellent, with low variability (ET: 6.99–8.02%, PD: 3.51–6.94%) and high reliability (ICC; ET: 0.88–0.96, PD: 0.98–0.99). The ET group showed higher variability and lower ICCs than the PD group. The variability in the 90-min images (ET: 7.85–8.59%, PD: 1.52–2.75%) was comparable to that in the 3-h images (ET: 6.99–8.02%, PD: 3.51–6.94%). There were no differences in variability among the subregions in the ET group. In the PD group, the variability was high in the posterior putamen (automatic method: 6.94%, manual method: 11.80%). The test–retest variability and ICCs were similar for the manual and automatic methods.

Conclusion

[18F]FP-CIT PET is reproducible for the quantitative measurement of DAT binding in both ET and PD individuals, independent of the acquisition time or analysis method. Also, the automatic method is more suitable for evaluating early loss of DAT binding in patients with PD

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368:610–22.

    Article  CAS  Google Scholar 

  2. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:384–6.

    Article  CAS  Google Scholar 

  3. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909.

    Article  CAS  Google Scholar 

  4. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain. 2002;125:861–70.

    Article  Google Scholar 

  5. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.

    Article  CAS  Google Scholar 

  6. Kim JS. Practical approach for the clinical use of dopamine transporter imaging. Nucl Med Mol Imaging. 2008;42:425–34.

    Google Scholar 

  7. Hirvonen J, Johansson J, Teräs M, Oikonen V, Lumme V, Virsu P, et al. Measurement of striatal and extrastriatal dopamine transporter binding with high-resolution PET and [11C]PE2I: quantitative modeling and test-retest reproducibility. J Cereb Blood Flow Metab. 2008;28:1059–69.

    Article  CAS  Google Scholar 

  8. Kaller S, Rullmann M, Patt M, Becker GA, Luthardt J, Girbardt J, et al. Test-retest measurements of dopamine D(1)-type receptors using simultaneous PET/MRI imaging. Eur J Nucl Med Mol Imaging. 2017;44:1025–32.

    Article  CAS  Google Scholar 

  9. Yeh CB, Chou YH, Cheng CY, Lee MS, Wang JJ, Lee CH, et al. Reproducibility of brain dopamine transporter binding with Tc-99m TRODAT-1 SPECT in healthy young men. Psychiatry Res. 2012;201:222–5.

    Article  CAS  Google Scholar 

  10. Matsuoka K, Yasuno F, Shinkai T, Miyasaka T, Takahashi M, Kiuchi K, et al. Test-retest reproducibility of extrastriatal binding with (123)I-FP-CIT SPECT in healthy male subjects. Psychiatry Res Neuroimaging. 2016;258:10–5.

    Article  Google Scholar 

  11. Kodaka F, Ito H, Kimura Y, Fujie S, Takano H, Fujiwara H, et al. Test-retest reproducibility of dopamine D2/3 receptor binding in human brain measured by PET with [11C]MNPA and [11C]raclopride. Eur J Nucl Med Mol Imaging. 2013;40:574–9.

    Article  CAS  Google Scholar 

  12. Tsuchida T, Ballinger JR, Vines D, Kim YJ, Utsunomiya K, Lang AE, et al. Reproducibility of dopamine transporter density measured with 123I-FPCIT SPECT in normal control and Parkinson’s disease patients. Ann Nucl Med. 2004;18:609–16.

    Article  Google Scholar 

  13. Hwang WJ, Yao WJ, Wey SP, Ting G. Reproducibility of 99mTc-TRODAT-1 SPECT measurement of dopamine transporters in Parkinson’s disease. J Nucl Med. 2004;45:207–13.

    CAS  PubMed  Google Scholar 

  14. Deuschl G, Bain P, Brin M. Consensus statement of the movement disorder society on tremor. Ad hoc scientific committee. Mov Disord. 1998;13(Suppl 3):2–23.

    PubMed  Google Scholar 

  15. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181–4.

    Article  CAS  Google Scholar 

  16. Lee SJ, Oh SJ, Chi DY, Kang SH, Kil HS, Kim JS, et al. One-step high-radiochemical-yield synthesis of [18F]FP-CIT using a protic solvent system. Nucl Med Biol. 2007;34:345–51.

    Article  CAS  Google Scholar 

  17. Baumgartner R, Joshi A, Feng D, Zanderigo F, Ogden RT. Statistical evaluation of test-retest studies in PET brain imaging. EJNMMI Res. 2018;8:13.

    Article  Google Scholar 

  18. Barnhart HX, Barboriak DP. Applications of the repeatability of quantitative imaging biomarkers: a review of statistical analysis of repeat data sets. Transl Oncol. 2009;2:231–5.

    Article  Google Scholar 

  19. Quan H, Shih WJ. Assessing reproducibility by the within-subject coefficient of variation with random effects models. Biometrics. 1996;52:1195–203.

    Article  CAS  Google Scholar 

  20. Snedecor GW, Cochran WG. Specific indices of interater reliability. In: Snedecor GW, Cochran WG, editors. Statistical methods. Ames, IA: Iowa State University Press; 1989. p. 147–56.

    Google Scholar 

  21. Seibyl JP, Marek K, Sheff K, Baldwin RM, Zoghbi S, Zea-Ponce Y, et al. Test/retest reproducibility of iodine-123-betaCIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J Nucl Med. 1997;38:1453–9.

    CAS  PubMed  Google Scholar 

  22. Booij J, Habraken JB, Bergmans P, Tissingh G, Winogrodzka A, Wolters EC, et al. Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med. 1998;39:1879–84.

    CAS  PubMed  Google Scholar 

  23. Malison RT, Laruelle M, Innis RB. Positron and single photon emission tomography: principles and applications in psychopharmacology. In: Bloom FE, Kupfer DJ, editors. The fourth generation of progress. New York, NY: Raven Press; 1995. p. 865.

    Google Scholar 

  24. Asenbaum S, Brücke T, Pirker W, Podreka I, Angelberger P, Wenger S, et al. Imaging of dopamine transporters with iodine-123-beta-CIT and SPECT in Parkinson’s disease. J Nucl Med. 1997;38:1–6.

    CAS  PubMed  Google Scholar 

  25. Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by [123I]FPCIT SPECT. J Nucl Med. 1999;40:753–61.

    CAS  PubMed  Google Scholar 

  26. Kazumata K, Dhawan V, Chaly T, Antonini A, Margouleff C, Belakhlef A, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med. 1998;39:1521–30.

    CAS  PubMed  Google Scholar 

  27. Alakurtti K, Johansson JJ, Joutsa J, Laine M, Bäckman L, Nyberg L, et al. Long-term test-retest reliability of striatal and extrastriatal dopamine D2/3 receptor binding: study with [(11)C]raclopride and high-resolution PET. J Cereb Blood Flow Metab. 2015;35:1199–205.

    Article  CAS  Google Scholar 

  28. Egerton A, Demjaha A, McGuire P, Mehta MA, Howes OD. The test-retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. Neuroimage. 2010;50:524–31.

    Article  Google Scholar 

  29. Gibb WR. Neuropathology of Parkinson’s disease and related syndromes. Neurol Clin. 1992;10:361–76.

    Article  CAS  Google Scholar 

  30. Suzuki M, Ito H, Kodaka F, Takano H, Kimura Y, Fujiwara H, et al. Reproducibility of PET measurement for presynaptic dopaminergic functions using L-[β-(11)C]DOPA and [(18)F]FE-PE2I in humans. Nucl Med Commun. 2014;35:231–7.

    Article  CAS  Google Scholar 

  31. Yaqub M, Boellaard R, van Berckel BN, Ponsen MM, Lubberink M, Windhorst AD, et al. Quantification of dopamine transporter binding using [18F]FP-beta-CIT and positron emission tomography. J Cereb Blood Flow Metab. 2007;27:1397–406.

    Article  CAS  Google Scholar 

  32. Gardiner SA, Morrison MF, Mozley PD, Mozley LH, Brensinger C, Bilker W, et al. Pilot study on the effect of estrogen replacement therapy on brain dopamine transporter availability in healthy, postmenopausal women. Am J Geriatr Psychiatry. 2004;12:621–30.

    Article  Google Scholar 

Download references

Funding

This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), which was funded by the Ministry of Health & Welfare, Republic of Korea (grant numbers: HI14C2768 & HI18C2383), and a grant from the Ministry of Science and ICT (MIST), Republic of Korea (grant number: 2017M2A2A6A02020353, 2020M2D9A1094074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Seung Kim.

Ethics declarations

Ethical approval

The study has been approved by the Asan Medical Center institutional review board (2018-0183), and all patients signed an informed consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, H.J., Oh, J.S., Oh, M. et al. Test–retest reproducibility of dopamine transporter density measured with [18F]FP-CIT PET in patients with essential tremor and Parkinson’s disease. Ann Nucl Med 35, 299–306 (2021). https://doi.org/10.1007/s12149-020-01561-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-020-01561-9

Keywords

Navigation