Skip to main content
Log in

Determination of ethambutol in biological samples using graphene oxide based dispersive solid-phase microextraction followed by ion mobility spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

A simple, fast and reliable graphene oxide nanosheets based dispersive solid-phase microextraction methodology was described for the quantification of trace amount of ethambutol. The determination of ethambutol quantified with the aim of ion mobility spectroscopy as a sensitive, rapid, inexpensive and environmentally friendly instrument. Effects of relevant experimental parameters on the method efficiency such as pH, type of buffer and its volume, amount of absorbent, desorption solvent and extract time were investigated to reach the maximum efficiency of the proposed method. Under the optimum conditions, the calibration curve was linear in the range of 1 to 120 μg L−1 with the R-squared (R2) of 0.9990. The limit of detection for proposed method (n = 8) was 0.4 μg L−1 and the relative standard deviations were obtained (n = 8) 3.3% and 1.6% for 10 and 100 μg L−1, respectively. The proposed method was successfully applied for the preconcentration and determination of ethambutol in the different biological samples such as plasma, saliva, breast milk and artificial tear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marks V (1979) Clinical monitoring of therapeutic drugs. Ann Clin Biochem 16(1-6):370–379. https://doi.org/10.1177/000456327901600195

    Article  CAS  PubMed  Google Scholar 

  2. Pribor HC, Morrell G, Scherr GH (1980) Drug monitoring and pharmacokinetic data. Pathotox Publishers, Illinois

    Google Scholar 

  3. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145–2148. https://doi.org/10.1021/ac00218a019

    Article  CAS  Google Scholar 

  4. Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M (2016) New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta 905:8–23. https://doi.org/10.1016/j.aca.2015.10.041

    Article  CAS  PubMed  Google Scholar 

  5. Ouyang G, Pawliszyn J (2006) SPME in environmental analysis. Anal Bioanal Chem 386(4):1059–1073. https://doi.org/10.1007/s00216-006-0460-z

    Article  CAS  PubMed  Google Scholar 

  6. Hernández-Hernández AA, Álvarez-Romero GA, Contreras-López E, Aguilar-Arteaga K, Castañeda-Ovando A (2017) Food nalysis by microextraction methods based on the use of magnetic nanoparticles as supports: recent advances. Food Anal Methods 10(9):2974–2993

    Article  Google Scholar 

  7. Kataoka H (2010) Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 396(1):339–364. https://doi.org/10.1007/s00216-009-3076-2

    Article  CAS  PubMed  Google Scholar 

  8. Huang S, Zhu F, Jiang R, Zhou S, Zhu D, Liu H, Ouyang G (2015) Determination of eight pharmaceuticals in an aqueous sample using automated derivatization solid-phase microextraction combined with gas chromatography–mass spectrometry. Talanta 136:198–203. https://doi.org/10.1016/j.talanta.2014.11.071

    Article  CAS  PubMed  Google Scholar 

  9. Ansari S, Karimi M (2017) Recent progress, challenges and trends in trace determination of drug analysis using molecularly imprinted solid-phase microextraction technology. Talanta 164:612–625. https://doi.org/10.1016/j.talanta.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  10. Eisert R, Pawliszyn J (1997) Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Anal Chem 69(16):3140–3147. https://doi.org/10.1021/ac970319a

    Article  CAS  Google Scholar 

  11. Tsai WH, Huang TC, Huang JJ, Hsue YH, Chuang HY (2009) Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. J Chromatogr A 1216(12):2263–2269. https://doi.org/10.1016/j.chroma.2009.01.034

    Article  CAS  PubMed  Google Scholar 

  12. Bruheim I, Liu X, Pawliszyn J (2003) Thin-film microextraction. Anal Chem 75(4):1002–1010. https://doi.org/10.1021/ac026162q

    Article  CAS  Google Scholar 

  13. Wu Q, Wang C, Liu Z, Wu C, Zeng X, Wen J, Wang Z (2009) Dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography. J Chromatogr A 1216(29):5504–5510. https://doi.org/10.1016/j.chroma.2009.05.062

    Article  CAS  PubMed  Google Scholar 

  14. Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897

    Article  CAS  Google Scholar 

  15. Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC - Trends Anal Chem 51:33–43. https://doi.org/10.1016/j.trac.2013.05.011

    Article  CAS  Google Scholar 

  16. He H, Klinowski J, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287(1-2):53–56. https://doi.org/10.1016/S0009-2614(98)00144-4

    Article  CAS  Google Scholar 

  17. Yoon YH, Jung KH, Sadun AA, Shin HC, Koh JY (2000) Ethambutol-induced vacuolar changes and neuronal loss in rat retinal cell culture: mediation by endogenous zinc. Toxicol Appl Pharmacol 162(2):107–114. https://doi.org/10.1006/taap.1999.8846

    Article  CAS  PubMed  Google Scholar 

  18. Chellini PR, Mendes TO, Franco PHC et al (2017) Simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol in 4-FDC tablet by Raman spectroscopy associated to chemometric approach. Vib Spectrosc 90:14–20. https://doi.org/10.1016/j.vibspec.2017.03.001

    Article  CAS  Google Scholar 

  19. Lima AEB, Luz GE, Batista NC et al (2016) Determination of ethambutol in aqueous medium using an inexpensive gold microelectrode array as amperometric sensor. Electroanalysis 28(5):985–989. https://doi.org/10.1002/elan.201500600

    Article  CAS  Google Scholar 

  20. Sepehri Z, Bagheri H, Ranjbari E, Amiri-Aref M, Amidi S, Rouini MR, Ardakani YH (2018) Simultaneous electrochemical determination of isoniazid and ethambutol using poly-melamine/electrodeposited gold nanoparticles modified pre-anodized glassy carbon electrode. Ionics (Kiel) 24(4):1253–1263. https://doi.org/10.1007/s11581-017-2263-y

    Article  CAS  Google Scholar 

  21. Thanh Tung B, Thi Luyen L, Manh Hung T et al (2018) Simultaneous determination of pyrazinamide, rifampicin, ethambutol, isoniazid and acetyl isoniazid in human plasma by LC-MS/MS method ARTICLE INFO ABSTRACT. J Appl Pharm Sci 8(9):61–073. https://doi.org/10.7324/JAPS.2018.8910

    Article  Google Scholar 

  22. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  23. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  24. Beggs WH, Andrews FA (1974) Chemical characterization of ethambutol binding to Mycobacterium smegmatis. Antimicrob Agents Chemother 5(3):234–239. https://doi.org/10.1128/AAC.5.3.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang Y, Raliya R, Fortner JD, Biswas P (2016) Graphene oxides in water: correlating morphology and surface chemistry with aggregation behavior. Environ Sci Technol 50(13):6964–6973. https://doi.org/10.1021/acs.est.6b00810

    Article  CAS  PubMed  Google Scholar 

  26. Ma CK, Mok CS, Hon PK (1995) Determination of benzhexol hydrochloride and ethambutol hydrochloride tablets by liquid chromatography. Anal Chim Acta 314(1-2):77–85. https://doi.org/10.1016/0003-2670(95)00264-Z

    Article  CAS  Google Scholar 

  27. Conte JE, Lin E, Zhao Y, Zurlinden E (2002) A high-pressure liquid chromatographic-tandem mass spectrometric method for the determination of ethambutol in human plasma, bronchoalveolar lavage fluid, and alveolar cells. J Chromatogr Sci 40(2):113–118. https://doi.org/10.1093/chromsci/40.2.113

    Article  CAS  PubMed  Google Scholar 

  28. Yan M, Guo T, Song H, Zhao Q, Sui Y (2007) Determination of ethambutol hydrochloride in the combination tablets by precolumn derivatization. J Chromatogr Sci 45(5):269–272. https://doi.org/10.1093/chromsci/45.5.269

    Article  CAS  PubMed  Google Scholar 

  29. Singh H, Sharma G, Kaur IP (2014) Development and validation of an UPLC method for the quantification of ethambutol in rat plasma. RSC Adv 4(81):42831–42838. https://doi.org/10.1039/C4RA06052K

    Article  CAS  Google Scholar 

  30. Prajapati P, Agrawal YK (2016) SFC-MS for the identification and estimation of ethambutol in its dosage form and in human urine samples. Anal Methods 8(24):4895–4902. https://doi.org/10.1039/C6AY01208F

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Damghan University Research Council (Damghan, Iran) is thanked for financial support of this project. The authors are grateful to the Verschuren Center for Sustainability in Energy and the Environment, Cape Breton University, Canada for their cooperation in this project. Also, we would like to acknowledge the Iranian Blood Transfusion Organization (Damghan, Iran) for providing the plasma samples.

Funding

This work was funded by the Damghan University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Aibaghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiee, A., Aibaghi, B. & Zhang, X. Determination of ethambutol in biological samples using graphene oxide based dispersive solid-phase microextraction followed by ion mobility spectrometry. Int. J. Ion Mobil. Spec. 23, 19–27 (2020). https://doi.org/10.1007/s12127-019-00253-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-019-00253-z

Keywords

Navigation