Skip to main content

Advertisement

Log in

miR-33a inhibits cell proliferation and invasion by targeting CAND1 in lung cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Lung cancer continues to be one of the top five causes of cancer-related mortality. This study aims to identify down- and upregulated miRNAs and mRNA which can be used as potential biomarkers and/or therapeutic targets for lung cancer.

Methods

Integrated analysis of differential expression profiles of miRNA and mRNA in lung cancer was performed by searching Gene Expression Omnibus datasets. Based on miRNA expression profiles, direct mRNA targets of miRNAs with experimental support were identified through miRTarBase. The levels of representative miRNAs and mRNAs were confirmed through qualitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR).

Results

The miR-33a was decreased in non-small cell lung cancer (NSCLC) tissues compared with the para-carcinoma tissues, whereas its target mRNA of cullin-associated NEDD8-dissociated protein 1 (CAND1) was increased in NSCLC tissues. Further research has shown that miR-33a can inhibit lung cancer cell proliferation, cell cycle progression, and migration by targeting CAND1. Moreover, the CAND1 knockout lung cancer cells showed similar results as cells transfected with miR-33a mimic.

Conclusions

These results suggested that the data mining based on online databases was an effective method in finding novel target in cancer research, and the miR-33a and CAND1 played an important role in lung cancer proliferation and cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Esposito L, Conti D, Ailavajhala R, Khalil N, Giordano A. Lung cancer: are we up to the challenge? Curr Genom. 2010;11(7):513.

    Article  CAS  Google Scholar 

  2. Granville CA, Dennis PA. An overview of lung cancer genomics and proteomics. Am J Respir Cell Mol Biol. 2005;32(3):169.

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Wen L, Zhao SH, Ai ZH, Guo JZ, Liu WC. FoxM1 expression is significantly associated with cisplatin-based chemotherapy resistance and poor prognosis in advanced non-small cell lung cancer patients. Lung cancer. 2013;79(2):173.

    Article  PubMed  Google Scholar 

  4. Yokota J, Kohno T. Molecular footprints of human lung cancer progression. Cancer Sci. 2004;95(3):197.

    Article  CAS  PubMed  Google Scholar 

  5. Cui M, Augert A, Rongione M, Conkrite K, Parazzoli S, Nikitin AY, et al. PTEN is a potent suppressor of small cell lung cancer. Mol Cancer Res. 2014;12(5):654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001;2(12):919.

    Article  CAS  PubMed  Google Scholar 

  7. Tutar Y, Ozgur A, Tutar E, Tutar L, Pulliero A, Izzotti A. Regulation of oncogenic genes by MicroRNAs and pseudogenes in human lung cancer. Biomed Pharmacother = Biomedecine & pharmacotherapie. 2016;83:1182.

    Article  CAS  Google Scholar 

  8. Markou A, Sourvinou I, Vorkas PA, Yousef GM, Lianidou E. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung cancer. 2013;81(3):388.

    Article  CAS  PubMed  Google Scholar 

  9. Tang D, Shen Y, Wang M, Yang R, Wang Z, Sui A, et al. Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer. Eur J Cancer Prev. 2013;22(6):540.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu W, Zhou K, Zha Y, Chen D, He J, Ma H, et al. Diagnostic value of serum miR-182, miR-183, miR-210, and miR-126 levels in patients with early-stage non-small cell lung cancer. PLoS One. 2016;11(4):e0153046.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li G, Li M, Hu J, Lei R, Xiong H, Ji H, et al. The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis. Oncogene. 2016;36(7):989–98.

    Article  PubMed  Google Scholar 

  12. Chiu KL, Kuo TT, Kuok QY, Lin YS, Hua CH, Lin CY, et al. ADAM9 enhances CDCP1 protein expression by suppressing miR-218 for lung tumor metastasis. Sci Rep. 2015;5:16426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402.

    Article  CAS  PubMed  Google Scholar 

  14. Xiao H, Zeng J, Li H, Chen K, Yu G, Hu J, et al. MiR-1 downregulation correlates with poor survival in clear cell renal cell carcinoma where it interferes with cell cycle regulation and metastasis. Oncotarget. 2015;6(15):13201.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Green CM, Erdjument-Bromage H, Tempst P, Lowndes NF. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr Biol. 2000;10(1):39.

    Article  CAS  PubMed  Google Scholar 

  16. Banerjee J, Pradhan R, Gupta A, Kumar R, Sahu V, Upadhyay AD, et al. CDK4 in lung, and head and neck cancers in old age: evaluation as a biomarker. Clin Trans Oncol. 2017;19(5):571–8.

    Article  CAS  Google Scholar 

  17. Kim H, Shin EA, Kim CG, Lee DY, Kim B, Baek NI, et al. Obovatol induces apoptosis in non-small cell lung cancer cells via C/EBP homologous protein activation. Phytother Res. 2016;30(11):1841.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L, Li L, Wei H, Guo L, Ai C, Xu H, et al. Transcriptional factor FOXO3 negatively regulates the expression of nm23-H1 in non-small cell lung cancer. Thoracic Cancer. 2016;7(1):9.

    Article  PubMed  Google Scholar 

  19. Han SY, Han HB, Tian XY, Sun H, Xue D, Zhao C, et al. MicroRNA-33a-3p suppresses cell migration and invasion by directly targeting PBX3 in human hepatocellular carcinoma. Oncotarget. 2016;7(27):42461.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wei Q, Lei R, Hu G. Roles of miR-182 in sensory organ development and cancer. Thoracic Cancer. 2015;6(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. VanArsdale T, Boshoff C, Arndt KT, Abraham RT. Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clin Can Res. 2015;21(13):2905.

    Article  CAS  Google Scholar 

  22. Pore MM, Hiltermann TJ, Kruyt FA. Targeting apoptosis pathways in lung cancer. Cancer Lett. 2013;332(2):359.

    Article  CAS  PubMed  Google Scholar 

  23. Korzeniewski N, Hohenfellner M, Duensing S. CAND1 promotes PLK4-mediated centriole overduplication and is frequently disrupted in prostate cancer. Neoplasia. 2012;14(9):799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chua YS, Boh BK, Ponyeam W, Hagen T. Regulation of cullin RING E3 ubiquitin ligases by CAND1 in vivo. PLoS One. 2011;6(1):e16071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang M, Gong W, Zuo B, Chu B, Tang Z, Zhang Y, et al. The microRNA miR-33a suppresses IL-6-induced tumor progression by binding Twist in gallbladder cancer. Oncotarget. 2016;7(48):78640.

    PubMed  PubMed Central  Google Scholar 

  26. Guo XF, Wang AY, Liu J. HIFs-MiR-33a-Twsit1 axis can regulate invasiveness of hepatocellular cancer cells. Eur Rev Med Pharmacol Sci. 2016;20(14):3011.

    PubMed  Google Scholar 

  27. Zheng D, Haddadin S, Wang Y, Gu LQ, Perry MC, Freter CE, et al. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol. 2011;4(6):575.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Abd-El-Fattah AA, Sadik NA, Shaker OG, Aboulftouh ML. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys. 2013;67(3):875.

    Article  CAS  PubMed  Google Scholar 

  29. Dubiel D, Gierisch ME, Huang X, Dubiel W, Naumann M. CAND1-dependent control of cullin 1-RING Ub ligases is essential for adipogenesis. Biochem Biophys Acta. 2013;1833(5):1078.

    Article  CAS  PubMed  Google Scholar 

  30. Szabo E, Riffe ME, Steinberg SM, Birrer MJ, Linnoila RI. Altered cJUN expression: an early event in human lung carcinogenesis. Can Res. 1996;56(2):305.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Guilin Science and Technology Project (Project Number: 20150126-1-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. He or J. Shi.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest in the study.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Li, Y., Zhao, Y. et al. miR-33a inhibits cell proliferation and invasion by targeting CAND1 in lung cancer. Clin Transl Oncol 20, 457–466 (2018). https://doi.org/10.1007/s12094-017-1730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1730-2

Keywords

Navigation