Skip to main content
Log in

A Furstenberg–Zimmer structure theorem for \(\varvec{\sigma }\)-finitemeasure spaces

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

We show that an analog of the Furstenberg–Zimmer structure theorem holds for \(\sigma \)-finite non atomic measure spaces and measure preserving strongly recurrent actions of discrete groups. We adapt the idea of Tao in associating Hilbert modules to measure preserving extensions and show that for an isomorphic copy of the \(L^2\)-space, the tools of Zimmer structure theory could be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson J, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence (1997)

    Book  Google Scholar 

  2. Burckel R B, Weakly almost periodic functions on semigroups (1970) (New York: Gordon and Breach)

  3. Calderón A P, Sur les mesures invariantes, C.R. Acad. Sci. Paris 240 (1955) 1960–1962

  4. Dowker Y N, On measurable transformations in finite measure spaces, Ann. Math. 62(2) (1955) 504–516

    Article  MathSciNet  Google Scholar 

  5. Dowker Y N, Sur les applications mésurables, C.R. Acad. Sci. Paris 242 (1956) 329–331

  6. Eigen S, Hajian A, Ito Y and Prasad V, Existence and non-existence of a finite invariant measure, Tokyo J. Math. 35(2) (2012) 339–358

    Article  MathSciNet  Google Scholar 

  7. Eigen S, Hajian A, Ito Y and Prasad V, Weakly wandering sequences in ergodic theory, Springer Monographs in Mathematics (2014) (Springer)

  8. Erdös P and Turán P, On some sequences of integers, J. London Math. Soc. 11(4) (1936) 261–264

    Article  MathSciNet  Google Scholar 

  9. Folland G B, Real analysis, modern techniques and their applications, second edition (1999) (John Wiley, New York: Wiley-Interscience Publication)

  10. Furstenberg H, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977) 204–256

    Article  Google Scholar 

  11. Furstenberg H and Katznelson Y, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978) 275–291

    Article  MathSciNet  Google Scholar 

  12. Furstenberg H, Katznelson Y and Ornstein D, The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. 7 (1982) 527–552

    Article  MathSciNet  Google Scholar 

  13. Hajian A and Kakutani S, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc. 110 (1964) 136–151

    Article  MathSciNet  Google Scholar 

  14. Hajian A, Strongly recurrent transformations, Pacific J. Math. 14 (1964) 517–523

    Article  MathSciNet  Google Scholar 

  15. Hajian A and Ito Y, Weakly wandering sets and invariant measures for a group of transformations, J. Math. Mech. 18 (1969) 1203–1216

    MathSciNet  MATH  Google Scholar 

  16. Halmos P R, Invariant measures, Ann. Math. 48(3) (1947) 735–754

    Article  MathSciNet  Google Scholar 

  17. Hopf E, Theory of measures and invariant integrals, Trans. Amer. Math. Soc. 34 (1932) 353–373

    Article  MathSciNet  Google Scholar 

  18. Jones L and Krengel U, On transformations without finite invariant measure, Adv. Math. 12 (1974) 275–295

    Article  MathSciNet  Google Scholar 

  19. Katok A and Hasselblatt B, Handbook of dynamical systems, Volume 1B, 1st ed. (2005) (Elsevier Science)

  20. Kerr D and Li H, Ergodic theory, independence and dichotomies, Springer Monographs in Mathematics (2010) (Springer, Cham)

  21. Roth K F, On certain sets of integers, J. London Math. Soc. 28(1) (1953) 104–109

    Article  MathSciNet  Google Scholar 

  22. Szemerédi E, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hung. 20(1–2) (1969) 89–104

    Article  MathSciNet  Google Scholar 

  23. Szemerédi E, On sets of integers containing no \(k\) elements in arithmetic progression, Acta Arith. 27 (1975) 199–245

    Article  MathSciNet  Google Scholar 

  24. Tao T, Poincaré’s legacies, Part I: Pages from year two of a mathematical blog, American Mathematical Society, Providence (2009)

    Book  Google Scholar 

  25. van der Waerden B L, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927) 212–216

    MATH  Google Scholar 

  26. Zimmer R J, Extensions of ergodic group actions, Illinois J. Math. 20(3) (1976) 373–409

    Article  MathSciNet  Google Scholar 

  27. Zimmer R J, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20(3) (1976) 555–588

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MASSOUD AMINI.

Additional information

Communicated by Anish Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AMINI, M., SWID, J. A Furstenberg–Zimmer structure theorem for \(\varvec{\sigma }\)-finitemeasure spaces. Proc Math Sci 132, 16 (2022). https://doi.org/10.1007/s12044-022-00661-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-022-00661-y

Keywords

2010 Mathematics Subject Classification

Navigation