Skip to main content
Log in

On special representations of automorphisms of \(\sigma \)-finite measure spaces using Poincare recurrence theorem and Hopf decomposition

  • Original Paper
  • Published:
Advances in Operator Theory Aims and scope Submit manuscript

Abstract

We extend and strengthen Hopf’s decomposition theorem for \(\sigma \)-finite measure spaces, and provide a purely constructive proof. From this investigation, the Poincaré recurrence theorem follows in the more general setting. We prove that this theorem holds for (the restriction of a given automorphism onto) the conservative part and may fail for the dissipative part of the respective Hopf decomposition of the measure space. Our method of proof allows to view the restriction of a given automorphism on the dissipative part as the so-called direct shift automorphism, whereas the restriction onto the conservative part admits various special representations linked with an arbitrary subset of positive measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, J.: An Introduction to Infinite Ergodic Theory. American Mathematical Society, Rhode Island, Providence (1997)

    Book  MATH  Google Scholar 

  2. Avram, F., Pistorius, M.R., Usabel, M.: The two barriers ruin problem via a Wiener Hopf decomposition approach. Univ. Craiova Ser. Mat. Inf. 30(1), 38–44 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Cornfeld, I.P.,Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Grundlehren Math. Wiss., vol. 245, Springer, New York (1982)

  4. Halmos, P.: Lectures on Ergodic Theory. Chelsea, New York (1956)

    MATH  Google Scholar 

  5. Hopf, E.: Ergodentheorie. – Ergenbnisse der mathematik und inrer grenzgebieteverlag, herausgegeben von der schriftleitung des “Zentralblatt for mathematik” fonfter band. Von julius springer, Berlin (1937)

  6. Kaimanovich, V.A.: Hopf decomposition and horospheric limit sets. Ann. Acad. Sci. Fenn. Math. 35(2), 335–350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kalikow, S., McCutcheon, R.: An Outline of Ergodic Theory. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  8. Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics, vol. 6. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  9. Kesseböhmer, M., Munday, S., Stratmann, B.O.: Infinite Ergodic Theory of Numbers. de Gruyter, Boston (2016)

    MATH  Google Scholar 

  10. Kabluchko, Z., Stoev, S.: Stochastic integral representations and classification of sum- and max-infinitely divisible processes. Bernoulli 22(1), 107–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Roy, E.: Ergodic properties of Poissonian ID processes. Ann. Probab. 35(2), 551–576 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sukochev, F., Veksler, A.: The mean ergodic theorem in symmetric spaces. C. R. Acad. Sci. Paris Ser. I 355, 559–562 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sukochev, F., Veksler, A.: The mean Ergodic theorem in symmetric spaces. Stud. Math. 245(3), 229–253 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Teichmann, J.: Hopf’s decomposition and recurrent semigroups, Analyse non linéaire, Années 1995/97. Publ. Math. UFR Sci. Tech. Besançon 15, 109–121 (1999)

    Google Scholar 

  15. Veksler, A.S., Fedorov, A.L.: Symmetric Spaces and Statistical Ergodic Theorems for Automorphisms and Flows. Tashkent, FAN (in Russian) (2016)

    Google Scholar 

  16. Danilenko, I.A., Silva, E.C.: Ergodic theory: non-singular transformations. Mathematics of complexity and dynamical systems. Spring. N. Y. 1–3, 329–356 (2012)

    Google Scholar 

  17. Muratov, M.A., Rubshtein, B.-Z.A.: Symmetric spaces of measurable functions: some new and old advances (Russian). Sovrem. Mat. Fundam. Napravl. 66(2), 221–271 (2020); translation in J. Math. Sci. (N.Y.) 265(6), 924–969 (2022)

  18. Robert, A.M. (ed.): Mathematics of Complexity and Dynamical Systems. Springer, New York (2011)

    Google Scholar 

Download references

Acknowledgements

Using this opportunity, the authors express their gratitude to Alexei Ber (Tashkent, Uzbekistan), Dmitriy Zanin (UNSW, Sydney) and Thomas Scheckter (UNSW, Sydney) for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Sukochev.

Additional information

Communicated by Timur Oikhberg.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukochev, F., Veksler, A. On special representations of automorphisms of \(\sigma \)-finite measure spaces using Poincare recurrence theorem and Hopf decomposition. Adv. Oper. Theory 8, 46 (2023). https://doi.org/10.1007/s43036-023-00279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43036-023-00279-5

Keywords

Mathematics Subject Classification

Navigation