Skip to main content
Log in

A unified theory of gravity and electromagnetism: Classical and quantum aspects

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A unified classical theory of gravity and electromagnetism with a torsion vector \(\Gamma _i \ne 0\), proposed by S N Bose in 1952, is introduced. In this theory, the torsion vector acts as a magnetic current and it is shown that (i) the electromagnetism is invariant under continuous Heaviside–Larmor transformations and (ii) the electric and magnetic charges are topologically quantised, satisfying the Dirac quantisation condition, without implying any Dirac string provided \(\Gamma _i\) is curl-less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C M Will, Liv. Rev. Relativ. 17, 4 (2014), https://doi.org/10.12942/lrr-2014-4

    Article  ADS  Google Scholar 

  2. R Cai, Z Cao, Z Guo, S Wang and T Yang, Natl. Sci. Rev. 4, 687 (2017)

    Article  Google Scholar 

  3. For a new vacuum solution, see R G Vishwakarma, Pramana – J. Phys. 85, 1101 (2015)

    Article  ADS  Google Scholar 

  4. L Baudis, Eur. Rev. 26, 70 (2018)

    Article  Google Scholar 

  5. P J E Peebles and B Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  Google Scholar 

  6. A Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  7. P Helbig, Mon. Not. R. Astron. Soc. 421, 561 (2012)

    ADS  Google Scholar 

  8. A Einstein, J. Frankl. Inst. 221, 370 (1936)

    Google Scholar 

  9. Einstein to Michele Besso, Vol. 15, Doc. 348 CPAE, 11 August 1926

  10. D Lehmkuhl, Phil. Sci. 84(5), 1202 (2017); Extended preprint at http://philsci-archive.pitt.edu/12461/

  11. A Einstein, Autobiographical notes in Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers edited by P A Schilpp (Library of Living Philosophers) (New York, Harper & Row Publishers, 1951) Vol. VII, p. 93

  12. A S Eddington, Proc. R. Soc. London A 99, 104 (1921)

    Article  ADS  Google Scholar 

  13. A Einstein, Sitzungsber. Preuss. Akad. Wiss. 5, 32 (1923); Sitzungsber. Preuss. Akad. Wiss. 22, 414 (1925)

  14. E Schrödinger, Space–time structure (Cambridge University Press, London, 1950)

    MATH  Google Scholar 

  15. M Rees, Just six numbers: The deep forces that shape the Universe (Basic Books, New York, 2000), ISBN 0-465-03673-2

  16. A Einstein, The meaning of relativity, 6th edn (Methuen & Co., London, 1956)

    MATH  Google Scholar 

  17. S N Bose, J. Phys. Radium (Paris) 14, 641 (1952)

    Article  Google Scholar 

  18. W Pauli, Theory of relativity (B.I. Publications, Bombay, 1963) p. 227

    Google Scholar 

  19. P A M Dirac, Proc. R. Soc. London A 133, 60 (1931)

    Article  ADS  Google Scholar 

  20. T T Wu and C N Yang, Phys. Rev. D 14, 437 (1976)

    Article  ADS  Google Scholar 

  21. N Cabibbo and E Ferrari, Nuovo Cimento 23, 1147 (1962)

    Article  Google Scholar 

  22. G Heaviside, Phil. Trans. R. Soc. (London) A 183, 423 (1893)

    Article  ADS  Google Scholar 

  23. J Larmor, Mathematical and physical papers (Cambridge University Press, Cambridge, UK, 2015) Vol. 2

  24. G ’t Hooft, Nucl. Phys. B 79, 276 (1974)

    Article  ADS  Google Scholar 

  25. A M Polyakov, JETP Lett. 20, 194 (1974)

    ADS  Google Scholar 

  26. K Subramanian, Rep. Prog. Phys. 79, 076901 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge very helpful comments by one of the referees which have led to some revisions in the presentation, particularly relating to symmetry breaking and Dirac strings. He is deeply indebted to Prof. S N Bose for his suggestion to look at some of his old papers to see if they have any modern relevance. The present work is a result of that search. The author also is thankful to the National Academy of Sciences, India, for a grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Ghose.

Additional information

Dedicated to the memory of Prof. S N Bose on his 125th birth anniversary.

Appendices

Appendix A

The straightforward algebra gives

$$\begin{aligned} {{\mathcal {L}}}&= \frac{1}{2}\sqrt{-g}(g^{ik}R_{ik} + {\tilde{g}}^{ik}{\tilde{R}}_{ik})\nonumber \\&= [{\bar{g}}^{(ik)}(R_{ik} + {\tilde{R}}_{ki}) + {\bar{g}}^{[ik]}(R_{ik} - {\tilde{R}}_{ki})]\nonumber \\&= {\bar{g}}^{(ik)}[R_{ik} - \Gamma ^{ \lambda }_{[i\xi ]}\Gamma ^{ \xi }_{[\lambda k]}]\nonumber \\&\quad + {\bar{g}}^{[ik]}(\Gamma ^\lambda _{[ik], \lambda } -\Gamma ^\lambda _{[i\lambda ], k} +\Gamma ^\xi _{ik}\Gamma ^\lambda _{\xi \lambda } - \Gamma ^\xi _{i\lambda }\Gamma ^\lambda _{\xi k}\nonumber \\&\quad - \Gamma ^\xi _{ki}\Gamma ^\lambda _{\lambda \xi } + \Gamma ^\xi _{\lambda i}\Gamma ^\lambda _{k\xi })\nonumber \\&= {\bar{g}}^{(ik)}[R_{ik} - \Gamma ^{ \lambda }_{[i\xi ]}\Gamma ^{ \xi }_{[\lambda k]}] + {\bar{g}}^{[ik]}[\Gamma ^\lambda _{ik; \lambda }]. \end{aligned}$$
(A1)

Following ref. [17] but using \(\Gamma _\mu = 0\), let

$$\begin{aligned} {{\mathcal {L}}} = H + \frac{\mathrm{d}X^\lambda }{\mathrm{d}x^\lambda } \end{aligned}$$
(A2)

with

$$\begin{aligned} X^\lambda&= {\bar{g}}^{(ik)}\Gamma _{(ik)}^\lambda - {\bar{g}}^{(i\lambda )}\Gamma ^k_{(ik)} + {\bar{g}}^{[ik]}\Gamma ^\lambda _{[ik]}, \end{aligned}$$
$$\begin{aligned} H&= - {\bar{g}}^{(ik)}_{ ,\lambda }\Gamma ^\lambda _{(ik)} + {\bar{g}}^{(i\lambda )}_{ ,\lambda }\Gamma ^k_{{(ik)}}\\&\quad + {\bar{g}}^{(ik)}(\Gamma ^\xi _{(ik)}\Gamma ^\lambda _{(\xi \lambda )} - \Gamma ^\xi _{(i\lambda )}\Gamma ^\lambda _{(\xi k)} \\&\quad - \Gamma ^\lambda _{[i\xi ]}\Gamma ^\xi _{[\lambda k]})- {\bar{g}}^{[ik]}_{ ,\lambda }\Gamma ^\lambda _{[ik]}\\&\quad + {\bar{g}}^{[ik]}[- \Gamma ^\lambda _{[i\xi ]}\Gamma ^\xi _{(\lambda k)} \\&\quad - \Gamma ^\lambda _{[\xi k]}\Gamma ^\xi _{(i\lambda )}+ \Gamma ^\xi _{[ik]}\Gamma ^\lambda _{(\xi \lambda )}]. \end{aligned}$$

Thus, H is free of the partial derivatives of \(\Gamma ^\lambda _{(ik)}\) and \(\Gamma ^\lambda _{[ik]}\), and the four-divergence term in the action integral is equal to a surface integral at infinity on which all arbitrary variations are taken to vanish.

The variations of H with respect to \(\Gamma ^\lambda _{(ik)}\) and \(\Gamma ^\lambda _{[ik]}\) give

$$\begin{aligned}&{\bar{g}}^{(ik)}_{ ,\lambda } + {\bar{g}}^{(i\alpha )}\Gamma ^k_{(\lambda \alpha )} + {\bar{g}}^{(\alpha k)}\Gamma ^i_{(\alpha \lambda )} - {\bar{g}}^{(ik)}\Gamma ^\alpha _{(\lambda \alpha )} \nonumber \\&\quad = -[{\bar{g}}^{[i\alpha ]}\Gamma ^{ k}_{[\lambda \alpha ]} + {\bar{g}}^{[\alpha k]}\Gamma ^{ i}_{[\alpha \lambda ]}], \end{aligned}$$
(A3)
$$\begin{aligned}&{\bar{g}}^{[ik]}_{ ,\lambda } + {\bar{g}}^{[i\alpha ]}\Gamma ^{k}_{(\lambda \alpha )} + {\bar{g}}^{[\alpha k]}\Gamma ^{i}_{(\alpha \lambda )} - {\bar{g}}^{[ik]}\Gamma ^\alpha _{(\lambda \alpha )} \nonumber \\&\quad = - [{\bar{g}}^{(i\alpha )}\Gamma ^{ k}_{[\lambda \alpha ]} + {\bar{g}}^{(\alpha k)}\Gamma ^{ i}_{[\alpha \lambda ]}]. \end{aligned}$$
(A4)

On adding (A3) and (A4), we get

$$\begin{aligned}&{\bar{g}}^{ik}_{ ,\lambda } + {\bar{g}}^{i\alpha }(\Gamma ^k_{(\lambda \alpha )} + \Gamma ^{k}_{[\lambda \alpha ]}) + {\bar{g}}^{\alpha k}(\Gamma ^i_{(\alpha \lambda )} + \Gamma ^{i}_{[\alpha \lambda ]})\nonumber \\&\quad - {\bar{g}}^{ik}\Gamma ^\alpha _{(\lambda \alpha )} = 0. \end{aligned}$$
(A5)

This can be written as

$$\begin{aligned}&{\bar{g}}^{ik}_{ ,\lambda } + {\bar{g}}^{i\alpha }\Gamma ^{\prime k}_{\lambda \alpha } + {\bar{g}}^{\alpha k}\Gamma ^{\prime i}_{\alpha \lambda } - {\bar{g}}^{ik}\Gamma ^\alpha _{(\lambda \alpha )} = 0,\nonumber \\&\Gamma ^{\prime k}_{\lambda \alpha } = \Gamma ^{k}_{(\lambda \alpha )} + \Gamma ^{k}_{[\lambda \alpha ]},\nonumber \\&\Gamma ^{\prime i}_{\alpha \lambda } = \Gamma ^{i}_{(\alpha \lambda )} + \Gamma ^{i}_{[\alpha \lambda ]}. \end{aligned}$$
(A6)

This is eq. (15).

By contracting (A6) once with respect to \((k, \lambda )\), then with respect to \((i, \lambda )\), and subtracting the equations term by term, one gets eq. (16).

Appendix B

In this appendix we shall use the Greek symbols \(\mu ,\nu \) instead of ik. Define

$$\begin{aligned} s^{\mu \nu }&= \frac{1}{2}\sqrt{-g}\left( g^{\mu \nu } + g^{\nu \mu }\right) \equiv \frac{1}{2}\left( {\bar{g}}^{\mu \nu } + {\bar{g}}^{\nu \mu }\right) \nonumber \\&=\frac{1}{2}\sqrt{-g}g^{(\mu \nu )}, \end{aligned}$$
(B1)
$$\begin{aligned} a^{\mu \nu }&= \frac{1}{2}\sqrt{-g}\left( g^{\mu \nu } - g^{\nu \mu }\right) \equiv \frac{1}{2}\left( {\bar{g}}^{\mu \nu } - {\bar{g}}^{\nu \mu }\right) \nonumber \\&= \frac{1}{2} \sqrt{-g} g^{[\mu \nu ]}. \end{aligned}$$
(B2)

The equations of connection in the broken symmetric theory are obtained by writing

$$\begin{aligned} {{\mathcal {L}}} = H + \frac{\mathrm{d} X^\lambda }{\mathrm{d}x^\lambda } \end{aligned}$$
(B3)

with

$$\begin{aligned}&X^\lambda = s^{\mu \nu }\Gamma _{(\mu \nu )}^\lambda - s^{\mu \lambda }\Gamma ^\nu _{(\mu \nu )} + a^{\mu \nu }Q^\lambda _{\mu \nu } \nonumber \\&\qquad \quad + \frac{2}{3} a^{\mu \lambda }\Gamma _\mu + \Gamma ^\lambda ,\nonumber \\&H = - s^{\mu \nu }_{, \lambda }\Gamma ^\lambda _{(\mu \nu )} + s^{\mu \lambda }_{, \lambda }\Gamma ^\nu _{{(\mu \nu )}} \nonumber \\&\qquad \quad + s^{\mu \nu } (\Gamma ^\xi _{(\mu \nu )}\Gamma ^\lambda _{(\xi \lambda )} - \Gamma ^\xi _{(\mu \lambda )}\Gamma ^\lambda _{(\xi \nu )})\nonumber \\&\qquad \quad +s^{\mu \nu }(-Q^\lambda _{\mu \xi }Q^\xi _{\lambda \nu } + x\Gamma _\mu \Gamma _\nu ) \nonumber \\&\qquad \quad + s^{\mu \nu }\Gamma ^\lambda _{(\mu \nu )}\Gamma _\lambda - a^{\mu \nu }_{, \lambda }Q^\lambda _{\mu \nu } \nonumber \\&\qquad \quad + a^{\mu \nu }( - Q^\lambda _{\mu \xi }\Gamma ^\xi _{(\lambda \nu )} - Q^\lambda _{\xi \nu }\Gamma ^\xi _{(\mu \lambda )} + Q^\xi _{\mu \nu }\Gamma ^\lambda _{(\xi \lambda )} ) \nonumber \\&\qquad \quad - y a^{\mu \lambda }_{, \lambda }\Gamma _\mu ,\nonumber \\&Q^\lambda _{\mu \nu } = \Gamma ^\lambda _{[\mu \nu ]} + \frac{1}{3}\delta ^\lambda _\mu \Gamma _\nu - \frac{1}{3}\delta ^\lambda _\nu \Gamma _\mu . \end{aligned}$$
(B4)

Note that

$$\begin{aligned} \delta \int \frac{\mathrm{d}X^\lambda }{\mathrm{d}x^\lambda } \mathrm {d}^4 x = \delta \int _\sigma X_\lambda \,\mathrm{d}\sigma ^\lambda = 0. \end{aligned}$$
(B5)

Hence, only variations of H will contribute.

It is easy to see that variations of the function

$$\begin{aligned} H - 2k^\mu Q^\lambda _{\mu \lambda }, \end{aligned}$$
(B6)

where \(k^\mu \) is a four-vector Lagrange multiplier, with respect to \(\Gamma ^\lambda _{(\mu \nu )}, Q^\lambda _{\mu \nu }\) and \(\Gamma _\mu \) give, respectively, the three equations

$$\begin{aligned}&s^{\mu \nu }_{, \lambda } + s^{\mu \alpha }\Gamma ^\nu _{(\lambda \alpha )} + s^{\alpha \nu }\Gamma ^\mu _{(\alpha \lambda )} - s^{\mu \nu }\Gamma ^\alpha _{(\lambda \alpha )}\nonumber \\&\quad = -[a^{\mu \alpha }Q^\nu _{\lambda \alpha } + a^{\alpha \nu }Q^\mu _{\alpha \lambda }], \end{aligned}$$
(B7)
$$\begin{aligned}&a^{\mu \nu }_{, \lambda } + a^{\mu \alpha }\Gamma ^\nu _{(\lambda \alpha )} + a^{\alpha \nu }\Gamma ^\mu _{(\alpha \lambda )} - a^{\mu \nu }\Gamma ^\alpha _{(\lambda \alpha )} \nonumber \\&\quad - k^\mu \delta ^\nu _\lambda + k^\nu \delta ^\mu _\lambda = - [s^{\mu \alpha }Q^\nu _{\lambda \alpha } + s^{\alpha \nu }Q^\mu _{\alpha \lambda }] \end{aligned}$$
(B8)

and

$$\begin{aligned} ya^{\mu \nu }_{, \nu } + x s^{\mu \nu }\Gamma _\nu = 0. \end{aligned}$$
(B9)

It follows from the first two equations that

$$\begin{aligned}&s^{\mu \alpha }_{,\alpha } + s^{\alpha \beta } \Gamma ^\mu _{(\alpha \beta )} + a^{\alpha \beta }Q^\mu _{\alpha \beta } = 0, \end{aligned}$$
(B10)
$$\begin{aligned}&a^{\mu \nu }_{, \nu } = 3k^\mu . \end{aligned}$$
(B11)

Hence, it follows from eq. (B9) and the last equation that

$$\begin{aligned} k^\mu&= \theta s^{\mu \nu }\Gamma _\nu , \quad \theta = -\frac{x}{3y},\end{aligned}$$
(B12)
$$\begin{aligned} k^\mu _{,\mu }&= 0. \end{aligned}$$
(B13)

Equations (B11) and (B12) result in eq. (27) in §3.

Adding (B7) and (B8), we get

$$\begin{aligned}&{\bar{g}}^{\mu \nu }_{,\lambda } + {\bar{g}}^{\mu \alpha }(\Gamma ^\nu _{(\lambda \alpha )} + Q^\nu _{\lambda \alpha }) + {\bar{g}}^{\alpha \nu }(\Gamma ^\mu _{(\alpha \lambda )} + Q^\mu _{\alpha \lambda })\nonumber \\&\quad - {\bar{g}}^{\mu \nu }\Gamma ^\alpha _{(\lambda \alpha )}= k^\mu \delta ^\nu _\lambda - k^\nu \delta ^\mu _\lambda , \end{aligned}$$
(B14)

where \({\bar{g}}^{\mu \nu } = \sqrt{- g} g^{\mu \nu }\). Multiplying (B14) by \({\bar{g}}_{\mu \nu }\) and using the results

$$\begin{aligned} {\bar{g}}^{\mu \nu }{\bar{g}}_{\mu \lambda } = \delta ^\nu _\lambda , \quad {\bar{g}}^{\mu \nu }{\bar{g}}_{\lambda \nu } = \delta ^\mu _\lambda , \quad Q^\lambda _{\alpha \lambda } = 0, \end{aligned}$$
(B15)

we first observe that

$$\begin{aligned} \Gamma ^\alpha _{(\lambda \alpha )}= & {} \frac{\vert g\vert _{, \lambda }}{2 \sqrt{- g}} + \frac{1}{2}({\bar{g}}_{\lambda \beta } - {\bar{g}}_{\beta \lambda })k^\beta \nonumber \\\equiv & {} \frac{\vert g\vert _{, \lambda }}{2 \sqrt{- g}} + {\bar{g}}_{[\lambda \beta ]}k^\beta . \end{aligned}$$
(B16)

Hence, dividing (B14) by \(\sqrt{- g}\), and also using (B16) and the results

$$\begin{aligned} g^{\mu \alpha }g_{\beta \alpha }k^\beta = k^\mu \quad \mathrm{and}\quad g^{\alpha \nu }g_{\alpha \beta }k^\beta = k^\nu , \end{aligned}$$
(B17)

we get

$$\begin{aligned}&g^{\mu \nu }_{, \lambda } {+} g^{\mu \alpha }\left( \Gamma ^\nu _{(\lambda \alpha )} {+} Q^\nu _{\lambda \alpha } {+} \frac{1}{\sqrt{- g}}(g_{\lambda \beta }k^\beta \delta ^\nu _\alpha {-} g_{\beta \alpha }k^\beta \delta ^\nu _\lambda ) \right) \nonumber \\&\qquad + g^{\alpha \nu }\left( \Gamma ^\mu _{(\alpha \lambda )} {+} Q^\mu _{\alpha \lambda } {+} \frac{1}{\sqrt{- g}}(g_{\alpha \beta }k^\beta \delta ^\mu _\lambda {-} g_{\beta \lambda }k^\beta \delta ^\mu _\alpha )\right) \nonumber \\&\quad = 3g^{\mu \nu }\frac{g_{[\lambda \beta ]}k^\beta }{\sqrt{- g}}. \end{aligned}$$
(B18)

Now, define the new affine coefficients

$$\begin{aligned} \Gamma ^{\prime \prime \nu }_{\lambda \alpha }&= \left( \Gamma ^\nu _{(\lambda \alpha )} {+} Q^\nu _{\lambda \alpha } {+} \frac{1}{\sqrt{- g}}(g_{\lambda \beta }k^\beta \delta ^\nu _\alpha {-} g_{\beta \alpha }k^\beta \delta ^\nu _\lambda ) \right) , \end{aligned}$$
(B19)
$$\begin{aligned} \Gamma ^{\prime \prime \mu }_{\alpha \lambda }&= \left( \Gamma ^\mu _{(\alpha \lambda )} {+} Q^\mu _{\alpha \lambda } {+} \frac{1}{\sqrt{- g}}(g_{\alpha \beta }k^\beta \delta ^\mu _\lambda {-} g_{\beta \lambda }k^\beta \delta ^\mu _\alpha )\right) \end{aligned}$$
(B20)

and

$$\begin{aligned} \Phi _\lambda = \frac{1}{2}g_{[\lambda \beta ]}k^{\beta }, \end{aligned}$$
(B21)

which is eq. (25) in §3. Then, eq. (B18) can be written in the form

$$\begin{aligned} g^{\mu \nu }_{, \lambda } + g^{\mu \alpha }\Gamma ^{\prime \prime \nu }_{\lambda \alpha } + g^{\alpha \nu }\Gamma ^{\prime \prime \mu }_{\alpha \lambda } = 3g^{\mu \nu }\Phi _\lambda . \end{aligned}$$
(B22)

This is eq. (24) in §3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghose, P. A unified theory of gravity and electromagnetism: Classical and quantum aspects. Pramana - J Phys 93, 79 (2019). https://doi.org/10.1007/s12043-019-1841-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1841-0

Keywords

PACS No

Navigation