Skip to main content
Log in

Genetic analysis of the mandible morphology in DDD.Cg-\(A^{y}\)/Sgn and C57BL/6J inbred mice

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTL) mapping analysis was performed for the mandible morphology in DDD.Cg-\(A^{y}/\hbox {Sgn}\) and C57BL/6J inbred mice. The size and shape of the mandible was analysed by landmark-based geometric morphometrics as the centroid size and principal components (PCs), respectively. The \(A^{y}\) allele at the agouti locus significantly reduced the mandible size in DDD/Sgn background, and substantially altered the mandible shape in both strain backgrounds. Single-QTL scans, by including the agouti locus genotype (\(A^{y}\) or non-\(A^{y}\)) as an additive covariate, identified three significant QTL for the centroid size on chromosomes 5, 6 and 17, along with four suggestive QTL on chromosomes 2, 12, 18 and 19. These QTLs explained 46.85% of the centroid size variation in \(\hbox {F}_{2}\) mice. When the \(\hbox {F}_{2} A^{y}\) and \(\hbox {F}_{2}\) non-\(A^{y}\) mice were analysed separately, additional significant QTL were identified on chromosomes 12 and 15 in \(\hbox {F}_{2}\) non-\(A^{y}\) mice. Single-QTL scans also identified 15 significant QTL for the PC1, PC2 and PC3. When the agouti locus genotype was included as an interactive covariate, nine significant QTLs were identified. Unexpectedly, these agouti-interacting QTLs were identified for relatively minor PCs, for which no significant single-QTL were identified. Therefore, it was suggested that the alteration of the mandible shape in \(A^{y}\) mice was the consequence of interactions between the \(A^{y}\) allele and genes that themselves have relatively small phenotypic effect. Although further in vivo studies are required, we postulated Pkd1 as a possible candidate gene underlying QTL for the centroid size on chromosome 17.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barash I. A., Cheung C. C., Weigle D. S., Ren H., Kabigting E. B., Kuijper J. L. et al. 1996 Leptin is a metabolic signal to the reproductive system. Endocrinology 137, 3144–3147.

    Article  CAS  Google Scholar 

  • Broman K. W. and Sen Ś. 2009 A guide to QTL mapping with R/qtl. Springer, New York.

    Book  Google Scholar 

  • Broman K. W., Wu H., Sen Ś. and Churchill G. A. 2003 R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890.

    Article  CAS  Google Scholar 

  • Burgio G., Baylac M., Heyer E. and Montagutelli X. 2012 Exploration of the genetic organization of morphological modularity on the mouse mandible using a set of interspecific recombinant congenic strains between C57BL/6J and mice of the Mus spretus species. G3 (Bethesda) 2, 1257–1268.

    Article  Google Scholar 

  • Cheverud J. M., Ehrich T. H., Vaughn T. T., Koreishi S. F., Linsey R. B. and Pletscher L. S. 2004 Pleiotropic effects on mandibular morphology II: differential epistasis and genetic variation in morphological integration. Exp. Zool. B Mol. Dev. Evol. 302, 424–435.

    Article  Google Scholar 

  • Churchill G. A. and Doerge R. W. 1994 Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dohmoto A., Shimizu K., Asada Y. and Maeda T. 2002 Quantitative trait loci on chromosomes 10 and 11 influencing mandible size of SMXA RI mouse strains. J. Dent. Res. 81, 501–504.

    Article  CAS  Google Scholar 

  • Dumont L. M., Wu C. S., Tatnell M. A., Cornish J. and Mountjoy K. G. 2005 Evidence for direct actions of melanocortin peptides on bone metabolism. Peptides 26, 1929–1935.

    Article  CAS  Google Scholar 

  • Dryden I. L. and Mardia K. V. 1998 Statistical shape analysis. Wiley, Chichester.

    Google Scholar 

  • Ehrich T. H., Vaughn T. T., Koreishi S. F., Linsey R. B., Pletscher L. S. and Cheverud J. M. 2003 Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. J. Exp. Zool. B Mol. Dev. Evol. 296, 58–79.

    Article  Google Scholar 

  • Festing M. 1972 Mouse strain identification. Nature 238, 351–352.

    Article  CAS  Google Scholar 

  • Festing M. 1973 A multivariate analysis of subline divergence in the shape of the mandible in C57BL/Gr mice. Genet. Res. 21, 121–132.

    Article  CAS  Google Scholar 

  • Goto N., Noguchi K. and Imamura K. 1979 Mouse strain identification by means of discriminant analysis using mandible measurements. Natl. Inst. Anim. Health Q. (Tokyo) 19, 121–131.

    CAS  Google Scholar 

  • Goto N., Miura K., Imamura K. and Komeda K. 1981 Genetic relationships between sublines of inbred strains of mice as assessed by mandible analysis. Natl. Inst. Anim. Health Q. (Tokyo) 21, 32–41.

    CAS  Google Scholar 

  • Goto N., Miura K., Imamura K. and Komeda K. 1982 Genetic relationships among 5 inbred strains established from common ancestor, dd mouse, as assessed by mandible analysis. Natl. Inst. Anim. Health Q. (Tokyo) 22, 70–75.

    CAS  Google Scholar 

  • Huszar D., Lynch C. A., Fairchild-Huntress V., Dunmore J. H., Fang Q., Berkemeier L. R. et al. 1997 Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141.

    Article  CAS  Google Scholar 

  • Klingenberg C. P. 2011 Morpho J: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357.

    Article  Google Scholar 

  • Klingenberg C. P. and McIntyre G. S. 1998 Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52, 1363–1375.

    Article  Google Scholar 

  • Klingenberg C. P. and Leamy L. J. 2001 Quantitative genetics of geometric shape in the mouse mandible. Evolution 55, 2342–2352.

    Article  CAS  Google Scholar 

  • Klingenberg C. P., Leamy L. J., Routman E. J. and Cheverud J. M. 2001 Genetic architecture of mandible shape: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics 157, 785–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klingenberg C. P., Leamy L. J. and Cheverud J. M. 2004 Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics 166, 1909–1921.

    Article  CAS  Google Scholar 

  • Komeda K. and Goto N. 1984 Mandible analysis of NOD and NON strains of mice. Lab. Anim. 18, 237–242.

    Article  CAS  Google Scholar 

  • Lander E. and Kruglyak L. 1995 Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11, 241–247.

    Article  CAS  Google Scholar 

  • Leamy L. J., Klingenberg C. P., Sherratt E., Wolf J. B. and Cheverud J. M. 2008 A search for quantitative trait loci exhibiting imprinting effects on mouse mandible size and shape. Heredity 101, 518–526.

    Article  CAS  Google Scholar 

  • Mountjoy K. G., Jenny Wu C. S., Dumont L. M. and Wild J. M. 2003 Melanocortin-4 receptor messenger ribonucleic acid expression in rat cardiorespiratory, musculoskeletal, and integumentary systems. Endocrinology 144, 5488–5496.

    Article  CAS  Google Scholar 

  • Mounzih K., Lu R. and Chehab F. F. 1997 Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology 138, 1190–1193.

    Article  CAS  Google Scholar 

  • Navarro N. and Maga A. M. 2016 Does 3D phenotyping yield substantial insights in the genetics of the mouse mandible shape? G3 (Bethesda) 6, 1153–1163.

    Article  Google Scholar 

  • Pallares L. F., Carbonetto P., Gopalakrishnan S., Parker C. C., Ackert-Bicknell C. L., Palmer A. A. et al. 2015 Mapping of craniofacial traits in outbred mice identifies major developmental genes involved in shape determination. PLoS Genet. 11, e1005607.

    Article  Google Scholar 

  • Sen Ś. and Churchill G. A. 2001 A statistical framework for quantitative trait mapping. Genetics 159, 371–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suto J. 2009a Identification of multiple quantitative trait loci affecting the size and shape of the mandible in mice. Mamm. Genome 20, 1–13.

    Article  CAS  Google Scholar 

  • Suto J. 2009b The \(A^{y}\) allele at the agouti locus reduces the size and alters the shape of the mandible in mice. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 248–257.

    Article  Google Scholar 

  • Suto J. 2011 Quantitative trait loci that control body weight and obesity in an \(\text{ F }_{2}\) intercross between C57BL/6J and DDD.Cg-\(A^{y}\) mice. J. Vet. Med. Sci. 73, 907–915.

    Article  Google Scholar 

  • Suto J. 2012 Quantitative trait locus mapping of genes that control body length and plasma insulin-like growth factor 1 level in mice. BMC Res. Notes 5, 547.

    Article  CAS  Google Scholar 

  • Wolff G. L., Roberts D. W. and Mountjoy K. G. 1999 Physiological consequence of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol. Genomics 1, 151–163.

    Article  CAS  Google Scholar 

  • Yagasaki Y., Yamaguchi T., Watahiki J., Konishi M., Katoh H. and Maki K. 2003 The role of craniofacial growth in leptin deficient (ob/ob) mice. Orthod. Craniofacial Res. 6, 233–241.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by an institutional grant (National Institute of Agrobiological Sciences). We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ichi Suto.

Additional information

Corresponding editor: H. A. Ranganath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suto, JI. Genetic analysis of the mandible morphology in DDD.Cg-\(A^{y}\)/Sgn and C57BL/6J inbred mice. J Genet 98, 89 (2019). https://doi.org/10.1007/s12041-019-1137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1137-7

Keywords

Navigation