Skip to main content

Advertisement

Log in

Effect of FIGF overexpression on liver cells transforming to insulin-producing cells

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Limitation in the number of insulin-producing pancreatic β-cells is a typical feature of diabetes. It has been indicated that activating pancreatic transcription factors can promote the transformation of hepatocytes into insulin-secreting β-like cells, indicating that direct hepatocyte differentiation seems promising as a treatment for diabetes. Nevertheless, the reprogramming efficiency still remains low. Our previous study found that the expression of c-fos-induced growth factor (FIGF) was increased in the pancreatic tissues in partial pancreatectomy mice compared to that in normal mice. Here, we observed that treatment with Ad-FIGF was found to enhance MafA and Ngn3-induced reprogramming of BNL CL.2 cells to β-like cells with the ability of secreting insulin. And FIGF overexpression increased the levels of histone H3/H4 acetylation at MafA and Ngn3 promoter regions in BNL CL.2 cells. Importantly, in vivo study further confirmed that forced expression of FIGF facilitated the insulin expression and decreased the blood glucose levels in STZ mice. These results strengthen the possibility of developing cell-based therapies for diabetes through utilizing β-like cells derived from non-insulin-secreting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

Ngn3:

Neurogenin-3

FIGF:

C-fos-induced growth factor

VEGF-D:

Vascular endothelial growth factor-D

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

PFA:

Paraformaldehyde

BSA:

Bovine serum albumin

RIPA:

Radioimmunoprecipitation assay

STZ:

Streptozotocin

References

  • Achen MG, Jeltsch M, Kukk E, Mäkinen T, Vitali A, Wilks AF, Alitalo K and Stacker SA 1998 Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl. Acad. Sci. USA 95 548–553

    Article  CAS  Google Scholar 

  • Chang FP, Cho CH, Shen CR, Chien CY, Ting LW, Lee HS and Shen CN 2016 PDGF Facilitates direct lineage reprogramming of hepatocytes to functional ß-like cells induced by Pdx1 and Ngn3. Cell Transplant. 25 1893–1909

    Article  Google Scholar 

  • Davydova N, Harris N, Roufail S, Paquet-Fifield S, Ishaq M, Streltsov V, Williams S, Karnezis T, et al. 2016 Differential receptor binding and regulatory mechanisms for the lymphangiogenic growth factors vascular endothelial growth factor (VEGF)-C and -D. J. Biol. Chem. 291 27265–27278

    Article  CAS  Google Scholar 

  • Docherty HM, Hay CW, Ferguson LA, Barrow J, Durward E and Docherty K 2005 Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter. Biochem. J. 389 813–820

    Article  CAS  Google Scholar 

  • Honkanen H, Izzi V, Petäistö T, Holopainen T, Harjunen V, Pihlajaniemi T, Alitalo K and Heljasvaara R 2016 Elevated VEGF-D modulates tumor inflammation and reduces the growth of carcinogen-induced skin tumors. Neoplasia 18 436–446

    Article  CAS  Google Scholar 

  • Jauhiainen S, Häkkinen S, Toivanen P, Heinonen S, Jyrkkänen H, Kansanen E, Leinonen H, Levonen A, et al. 2011 Vascular endothelial growth factor (VEGF)-D stimulates VEGF-A, stanniocalcin-1, and neuropilin-2 and has potent angiogenic effects. Arterioscler. Thromb. Vasc. Biol. 31 1617–1624

    Article  CAS  Google Scholar 

  • Jung Y, Zhou R, Kato T, Usui JK, Muratani M, Oishi H, Heck MMS and Takahashi S 2018 Isl1beta overexpression with key beta cell transcription factors enhances glucose-responsive hepatic insulin production and secretion. Endocrinology 159 869–882

    Article  Google Scholar 

  • Kaczorowski DJ, Patterson ES, Jastromb WE and Shamblott MJ 2010 Glucose-responsive insulin-producing cells from stem cells. Diabetes Metab. Res. Rev. 18 442–450

    Article  Google Scholar 

  • Kholová I, Koota S, Kaskenpää N, Leppänen P, Närväinen J, Kavec M, Rissanen T, Hazes T, et al. 2007 Adenovirus-mediated gene transfer of human vascular endothelial growth factor-d induces transient angiogenic effects in mouse hind limb muscle. Hum. Gene Ther. 18 232–244

    Article  Google Scholar 

  • Kocic G, Cukuranovic J, Stoimenov TJ, Cukuranovic R, Djordjevic V, Bogdanovic D and Stefanovic V 2014 Global and specific histone acetylation pattern in patients with Balkan endemic nephropathy, a worldwide disease. Ren. Fail. 36 1078–1082

    Article  CAS  Google Scholar 

  • Lee A, Lee J, Jung Y, Kim D, Kang K, Lee S, Park S, Lee S, et al. 2013 Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction. Kidney Int. 83 50–62

    Article  CAS  Google Scholar 

  • Matsuoka T, Kaneto H, Kawashima S, Miyatsuka T, Tochino Y, Yoshikawa A, Imagawa A, Miyazaki J. et al. 2015 Preserving Mafa expression in diabetic islet β-cells improves glycemic control in vivo. J. Biol. Chem. 290 7647–7657

    Article  CAS  Google Scholar 

  • Morfoisse F, Tatin F, Hantelys F, Adoue A, Helfer A, Cassant-Sourdy S, Pujol F, Gomez-Brouchet A, et al. 2016 Nucleolin promotes heat shock-associated translation of VEGF-D to promote tumor lymphangiogenesis. Cancer Res. 76 4394–4405

    Article  CAS  Google Scholar 

  • Nishimura W, Takahashi S and Yasuda K 2015 MafA is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia 58 566–574

    Article  CAS  Google Scholar 

  • Orlandini M, Marconcini L, Ferruzzi R and Oliviero S 1996 Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc. Natl. Acad. Sci. USA 93 11675–11680

    Article  CAS  Google Scholar 

  • Oropeza D and Horb M 2012 Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells. Genesis 50 271–285

    Article  Google Scholar 

  • Papiewska-Pająk I, Balcerczyk A, Stec-Martyna E, Koziołkiewicz W and Boncela J 2017 Vascular endothelial growth factor-D modulates oxidant-antioxidant balance of human vascular endothelial cells. J Cell Mol. Med. 21 1139–1149

    Article  Google Scholar 

  • Roy H, Bhardwaj S, Babu M, Lahteenvuo JE and Yla-Herttuala S 2010 VEGF-DdeltaNdeltaC mediated angiogenesis in skeletal muscles of diabetic WHHL rabbits. Eur. J. Clin. Invest. 40 422–432

    Article  CAS  Google Scholar 

  • Rutanen J, Rissanen T, Markkanen J, Gruchala M, Silvennoinen P, Kivelä A, Hedman A, Hedman M, et al. 2004 Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation 109 1029–1035

    Article  CAS  Google Scholar 

  • Sato T, Paquet-Fifield S, Harris N, Roufail S, Turner D, Yuan Y, Zhang Y, Fox S, et al. 2016 VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury. J. Pathol. 239 152–161

    Article  CAS  Google Scholar 

  • Sun L, Duan J, Jiang Y, Wang L, Huang N, Lin L, Liao Y and Liao W 2015 Metastasis-associated in colon cancer-1 upregulates vascular endothelial growth factor-C/D to promote lymphangiogenesis in human gastric cancer. Cancer Lett. 357 242–253

    Article  CAS  Google Scholar 

  • Teng ZG, Wei J and Fan H 2012 The important role of c-fos-induced growth factor in the pancreas regeneration. Chin. J. Diabetes 5 373–376

    Google Scholar 

  • Xu H, Tsang KS, Chan JC, Yuan P, Fan R, Kaneto H and Xu G 2013 The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells. Cell Transplant. 22 147–158

    Article  Google Scholar 

  • You YH, Ham DS, Park HS, Rhee M, Kim JW and Yoon KH 2011 Adenoviruses expressing PDX-1, BETA2/NeuroD and MafA induces the transdifferentiation of porcine neonatal pancreas cell clusters and adult pig pancreatic cells into beta-cells. Diabetes Metab. J. 35 119–129

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Project of Ningxia Natural Science Foundation (Grant No.: 2018AAC03264), First-Class Discipline Construction Founded Project of Ningxia Medical University and the School of Clinical Medicine (Grant No.: NXYLXK2017A05) and National Natural Science Foundation of China (Grant No.: 81460152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukui Li or Zhenhui Lu.

Additional information

Corresponding editor: Ullas Kolthur-Seetharam

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Xie, X., Li, X. et al. Effect of FIGF overexpression on liver cells transforming to insulin-producing cells. J Biosci 44, 149 (2019). https://doi.org/10.1007/s12038-019-9965-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9965-4

Keywords

Navigation