Skip to main content

Advertisement

Log in

Liver to Pancreas Transdifferentiation

  • Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Here, we review recent findings in the field of generating insulin-producing cells by pancreatic transcription factor (pTF)-induced liver transdifferentiation (TD). TD is the direct conversion of functional cell types from one lineage to another without passing through an intermediate stage of pluripotency. We address potential reasons for the restricted efficiency of TD and suggest modalities to overcome these challenges, to bring TD closer to its clinical implementation in autologous cell replacement therapy for insulin-dependent diabetes.

Recent Findings

Liver to pancreas TD is restricted to cells that are a priori predisposed to undergo the developmental process. In vivo, the predisposition of liver cells is affected by liver zonation and hepatic regeneration. The TD propensity of liver cells is related to permissive epigenome which could be extended to TD-resistant cells by specific soluble factors. An obligatory role for active Wnt signaling in continuously maintaining a “permissive” epigenome is suggested. Moreover, the restoration of the pancreatic niche and vasculature promotes the maturation of TD cells along the β cell function.

Summary

Future studies on liver to pancreas TD should include the maturation of TD cells by 3D culture, the restoration of vasculature and the pancreatic niche, and the extension of TD propensity to TD-resistant cells by epigenetic modifications. Liver to pancreas TD is expected to result in the generation of custom-made “self” surrogate β cells for curing diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med. 2000;6(5):568–72.

    Article  CAS  PubMed  Google Scholar 

  2. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116(5):639–48.

    Article  CAS  PubMed  Google Scholar 

  3. Filip S, English D, Mokry J. Issues in stem cell plasticity. J Cell Mol Med. 2004;8(4):572–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  5. Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem. 2003;278(34):31950–7. https://doi.org/10.1074/jbc.M303127200.

    Article  CAS  PubMed  Google Scholar 

  6. Meivar-Levy I, Sapir T, Gefen-Halevi S, Aviv V, Barshack I, Onaca N, et al. Pancreatic and duodenal homeobox gene 1 induces hepatic dedifferentiation by suppressing the expression of CCAAT/enhancer-binding protein beta. Hepatology (Baltimore, Md). 2007;46(3):898–905.

    Article  CAS  Google Scholar 

  7. Shen CN, Slack JM, Tosh D. Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol. 2000;2:879–88.

    Article  CAS  PubMed  Google Scholar 

  8. Xie H, Ye M, Feng R, Graf T. Stepwise reprogramming of B cells into macrophages. Cell. 2004;117(5):663–76.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463(7284):1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ieda M, Fu JD, Delgado-Olguin P, Vedatham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 2014;14(3):370–84. https://doi.org/10.1016/j.stem.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  13. van Oevelen C, Kallin EM, Graf T. Transcription factor-induced enhancer modulations during cell fate conversions. Curr Opin Genet Dev. 2013;23(5):562–7. https://doi.org/10.1016/j.gde.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  14. Meivar-Levy I, Ferber S. New organs from our own tissues: liver-to-pancreas transdifferentiation. Trends Endocrinol Metab. 2003;14(10):460–6.

    Article  CAS  PubMed  Google Scholar 

  15. Meivar-Levy I, Ferber S. Regenerative medicine: using liver to generate pancreas for treating diabetes. Isr Med Assoc J. 2006;8(6):430–4.

    PubMed  Google Scholar 

  16. Meivar-Levy I, Ferber S. Reprogramming of liver cells into insulin-producing cells. Best Pract Res Clin Endocrinol Metab. 2015;29(6):873–82. https://doi.org/10.1016/j.beem.2015.10.006.

    Article  CAS  PubMed  Google Scholar 

  17. • Firas J, Polo JM. Towards understanding transcriptional networks in cellular reprogramming. Curr Opin Genet Dev. 2017;46:1–8. https://doi.org/10.1016/j.gde.2017.06.001. Suggests the need to develop computational tools to reconstruct the transcriptional networks of starting and target cells, based on published data and single cells approaches to help tailoring accurate and specific developmental processes (Cell Mogrify).

    Article  CAS  PubMed  Google Scholar 

  18. •• Ellis C, Ramzy A, Kieffer TJ. Regenerative medicine and cell-based approaches to restore pancreatic function. Nature reviews Gastroenterology & hepatology. 2017;14(10):612–28. https://doi.org/10.1038/nrgastro.2017.93. Comprehensive review that describes progress and challenges in cell-based methods to restore pancreatic function, with a focus on optimizing the site for cell delivery and decreasing requirements for immunosuppression through encapsulation. Strategies to generate insulin-producing β cell surrogates in situ are discussed; obstacles to clinical application are highlighted.

    Article  CAS  Google Scholar 

  19. •• Latres E, Finan DA, Greenstein JL, Kowalski A, Kieffer TJ. Navigating Two Roads to Glucose Normalization in Diabetes: Automated Insulin Delivery Devices and Cell Therapy. Cell metabolism. 2019;29(3):545–63. https://doi.org/10.1016/j.cmet.2019.02.007. This recent review summarizes the significant progress that has been made in automated insulin delivery devices and cell therapy for diabetes. It addresses the barriers to widespread implementation of cell replacement approaches, compared with those achieved for artificial pancreas systems. It describes the road ahead, including the challenges and opportunities, as a cure for diabetes via both approaches.

    Article  CAS  PubMed  Google Scholar 

  20. Desmet VJ. Organization principles. In: Arias IM, Boyer JL, Chisari FV, Fausto N, Schachter D, Shafritz DA, editors. The liver; biology and pathobiology. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2001. p. 3–15.

    Google Scholar 

  21. • Gilgenkrantz H, Collin de L’Hortet A. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine. The American journal of pathology. 2018;188(6):1316–27. https://doi.org/10.1016/j.ajpath.2018.03.008. The review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine. A better understanding of the role of distinct liver cell populations in liver regeneration is potentially relevant for identifying cells that are predisposed to undergo TD to pancreas.

    Article  PubMed  Google Scholar 

  22. Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature. 2015;524(7564):180–5. https://doi.org/10.1038/nature14863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fukuda K, Kikuchi Y. Endoderm development in vertebrates: fate mapping, induction and regional specification. Develop Growth Differ. 2005;47(6):343–55. https://doi.org/10.1111/j.1440-169X.2005.00815.x.

    Article  Google Scholar 

  24. Ober EA, Field HA, Stainier DY. From endoderm formation to liver and pancreas development in zebrafish. Mech Dev. 2003;120(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  25. Yang H, Morrison CM, Conlon JM, Laybolt K, Wright JR Jr. Immunocytochemical characterization of the pancreatic islet cells of the Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol. 1999;114(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  26. Kito H, Ose Y, Mizuhira V, Sato T, Ishikawa T, Tazawa T. Separation and purification of (cd, cu, Zn)-metallothionein in carp hepato-pancreas. Comp Biochem Physiol C. 1982;73(1):121–7.

    Article  CAS  PubMed  Google Scholar 

  27. Deutsch G, Jung J, Zheng M, Lora J, Zaret KS. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development (Cambridge, England). 2001;128:871–81.

    CAS  Google Scholar 

  28. Otsuka M, Hoshida Y, Kato N, Moriyama M, Taniguchi H, Arai M, et al. Liver chip and gene shaving. J Gastroenterol. 2003;38(Suppl 15):89–92.

    CAS  PubMed  Google Scholar 

  29. • Cerda-Esteban N, Naumann H, Ruzittu S, Mah N, Pongrac IM, Cozzitorto C, et al. Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2. Nature communications. 2017;8:14127. https://doi.org/10.1038/ncomms14127. This study uncovers the reprogramming activity of TGIF2 and suggests a stepwise reprogramming paradigm, whereby a “lineage-restricted” dedifferentiation step precedes the identity switch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Varda-Bloom N, Shaish A, Gonen A, Levanon K, Greenbereger S, Ferber S, et al. Tissue-specific gene therapy directed to tumor angiogenesis. Gene Ther. 2001;8(11):819–27.

    Article  CAS  PubMed  Google Scholar 

  31. Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E, et al. From the cover: cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci U S A. 2005;102(22):7964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aviv V, Meivar-Levy I, Rachmut IH, Rubinek T, Mor E, Ferber S. Exendin-4 promotes liver cell proliferation and enhances PDX1-induced liver to pancreas transdifferentiation. J Biol Chem. 2009;284(48):33509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berneman-Zeitouni D, Molakandov K, Elgart M, Mor E, Fornoni A, Dominguez MR, et al. The temporal and hierarchical control of transcription factors-induced liver to pancreas transdifferentiation. PLoS One. 2014;9(2):e87812. https://doi.org/10.1371/journal.pone.0087812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gefen-Halevi S, Rachmut IH, Molakandov K, Berneman D, Mor E, Meivar-Levy I, et al. NKX6.1 promotes PDX1-induced liver to pancreatic beta-cells reprogramming. Cell Reprogram. 2010;12(6):655–64. https://doi.org/10.1089/cell.2010.0030.

    Article  CAS  PubMed  Google Scholar 

  35. • Chaimov D, Baruch L, Krishtul S, Meivar-Levy I, Ferber S, Machluf M. Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. Journal of controlled release : official journal of the Controlled Release Society. 2017;257:91–101. https://doi.org/10.1016/j.jconrel.2016.07.045. The paper unravels a novel encapsulation platform for the treatment of diabetes that is based on solubilized whole porcine pancreatic extracellular matrix (ECM). The ECM-microcapsule platform provides a natural fibrous 3D niche, supporting cell viability and differentiation, while significantly improving insulin delivery. In vivo, ECM-encapsulated cells were shown to be non-immunogenic and to significantly improve the glycemic control in diabetic mouse preclinical model.

    Article  CAS  Google Scholar 

  36. •• Cohen H, Barash H, Meivar-Levy I, Molakandov K, Ben-Shimon M, Gurevich M, et al. The Wnt/beta-catenin pathway determines the predisposition and efficiency of liver-to-pancreas reprogramming. Hepatology (Baltimore, Md). 2018. https://doi.org/10.1002/hep.29827. The study suggests that liver to pancreas TD inefficiency is due to the fact that only 5–15% of the cells in culture are a priori predisposed to undergo the pTFs induced process. A TD-prone subpopulation of liver cells from > 15 human donors is identified and separated, using lineage tracing system based on the hepatic pericentral-specific enhancer of glutamine synthetase (GLUL). The individually propagated cells exhibit substantially increased TD efficiency and insulin production occurs in > 60% of the cells upon ectopic pTF expression. The paper suggests also that TD propensity could be extended to most of the liver cells by artificially inducing epigenetic modifications. A role for active Wnt signaling in promoting liver to pancreas TD is discussed.

    Article  CAS  PubMed  Google Scholar 

  37. •• Meivar-Levy I, Zoabi F, Nardini G, Manevitz-Mendelson E, Leichner GS, Zadok O, et al. The role of the vasculature niche on insulin-producing cells generated by transdifferentiation of adult human liver cells. Stem cell research & therapy. 2019;10(1):–53. https://doi.org/10.1186/s13287-019-1157-5. The study discloses the paracrine role of vasculature (ECFC and MSC co-culture as well as conditioned media) in promoting TD-liver cells maturation both in vitro and in increasing insulin-producing cells survival upon implantation in vivo. The reconstitution of the vascular niche is expected to be an important player in regenerative medicine approaches in general.

  38. Meivar-Levy I, Sapir T, Berneman D, Weissbach T, Polak-Charcon S, Ravassard P, et al. Human liver cells expressing albumin and mesenchymal characteristics give rise to insulin-producing cells. J Transp Secur. 2011.

  39. Banga A, Akinci E, Greder LV, Dutton JR, Slack JM. In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proc Natl Acad Sci U S A. 2012;109(38):15336–41. https://doi.org/10.1073/pnas.1201701109.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Banga A, Greder LV, Dutton JR, Slack JM. Stable insulin-secreting ducts formed by reprogramming of cells in the liver using a three-gene cocktail and a PPAR agonist. Gene Ther. 2014;21(1):19–27. https://doi.org/10.1038/gt.2013.50.

    Article  CAS  PubMed  Google Scholar 

  41. Wang AY, Ehrhardt A, Xu H, Kay MA. Adenovirus transduction is required for the correction of diabetes using PDX1 or Neurogenin-3 in the liver. Mol Ther. 2007;15(2):255–63.

    Article  CAS  PubMed  Google Scholar 

  42. Yechoor V, Liu V, Paul A, Lee J, Buras E, Ozer K, et al. Gene therapy with neurogenin 3 and betacellulin reverses major metabolic problems in insulin-deficient diabetic mice. Endocrinology. 2009;150(11):4863–73. https://doi.org/10.1210/en.2009-0527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Y, Akinci E, Dutton JR, Banga A, Slack JM. Stage specific reprogramming of mouse embryo liver cells to a beta cell-like phenotype. Mech Dev. 2013;130(11-12):602–12. https://doi.org/10.1016/j.mod.2013.08.002.

    Article  CAS  PubMed  Google Scholar 

  44. Luo H, Chen R, Yang R, Liu Y, Chen Y, Shu Y, et al. Reprogramming of mice primary hepatocytes into insulin-producing cells by transfection with multicistronic vectors. J Diabetes Res. 2014;2014:716163. https://doi.org/10.1155/2014/716163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koizumi M, Doi R, Toyoda E, Tulachan SS, Kami K, Mori T, et al. Hepatic regeneration and enforced PDX1 expression accelerate transdifferentiation in liver. Surgery. 2004;136(2):449–57.

    Article  PubMed  Google Scholar 

  46. Burke ZD, Reed KR, Phesse TJ, Sansom OJ, Clarke AR, Tosh D. Liver zonation occurs through a beta-catenin-dependent, c-Myc-independent mechanism. Gastroenterology. 2009;136(7):2316–24.e1-3.

    Article  CAS  PubMed  Google Scholar 

  47. Torre C, Perret C, Colnot S. Molecular determinants of liver zonation. Prog Mol Biol Transl Sci. 2010;97:127–50.

    Article  CAS  PubMed  Google Scholar 

  48. Gebhardt R, Matz-Soja M. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J Gastroenterol. 2014;20(26):8491–504. https://doi.org/10.3748/wjg.v20.i26.8491.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gebhardt R, Baldysiak-Figiel A, Krugel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. Prog Histochem Cytochem. 2007;41(4):201–66.

    Article  CAS  PubMed  Google Scholar 

  50. Jungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology (Baltimore, Md). 2000;31(2):255–60.

    Article  CAS  Google Scholar 

  51. Kietzmann T, Jungermann K. Modulation by oxygen of zonal gene expression in liver studied in primary rat hepatocyte cultures. Cell Biol Toxicol. 1997;13(4-5):243–55.

    Article  CAS  PubMed  Google Scholar 

  52. Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS, Moinard C, et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev Cell. 2006;10(6):759–70.

    Article  CAS  PubMed  Google Scholar 

  53. • Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 2017;542(7641):–352, 6. https://doi.org/10.1038/nature21065. A detailed genome-wide reconstruction of the spatial hepatic zonation. The entire transcriptome of thousands of mouse liver cells and their lobule coordinates on the basis of a panel of zonated landmark genes is being characterized with single-molecule fluorescence in situ hybridization. Using this approach, the zonation profiles of all liver genes with high spatial resolution has been achieved. Information herein can be used for identifying membrane markers of hepatic predisposed cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. • Tsuchiya A, Lu WY. Liver stem cells: plasticity of the liver epithelium. World journal of gastroenterology. 2019;25(9):1037–49. https://doi.org/10.3748/wjg.v25.i9.1037. The article highlights recent findings about plasticity in the liver epithelium and the cellular source of regeneration during liver injury. Cellular sources of liver regeneration could be relevant for identifying liver cell populations that are predisposed to undergo pTF-induced liver to pancreas TD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL. Understanding the marvels behind liver regeneration. Wiley interdisciplinary reviews Developmental biology. 2019;8(3):e340. https://doi.org/10.1002/wdev.340.

    Article  PubMed  Google Scholar 

  56. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med. 2003;9(5):596–603.

    Article  CAS  PubMed  Google Scholar 

  57. Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H, et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell. 2009;16(3):358–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Katz LS, Geras-Raaka E, Gershengorn MC. Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation. Stem Cells Dev. 2013;22(18):2551–60. https://doi.org/10.1089/scd.2013.0134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Akinci E, Banga A, Tungatt K, Segal J, Eberhard D, Dutton JR, et al. Reprogramming of various cell types to a beta-like state by Pdx1, Ngn3 and MafA. PLoS One. 2013;8(11):e82424. https://doi.org/10.1371/journal.pone.0082424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cho YD, Yoon WJ, Kim WJ, Woo KM, Baek JH, Lee G, et al. Epigenetic modifications and canonical wingless/int-1 class (WNT) signaling enable trans-differentiation of nonosteogenic cells into osteoblasts. J Biol Chem. 2014;289(29):20120–8. https://doi.org/10.1074/jbc.M114.558064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Narayanan S, Loganathan G, Dhanasekaran M, Tucker W, Patel A, Subhashree V, et al. Intra-islet endothelial cell and beta-cell crosstalk: implication for islet cell transplantation. World J Transplant. 2017;7(2):117–28. https://doi.org/10.5500/wjt.v7.i2.117.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cleaver O, Dor Y. Vascular instruction of pancreas development. Development (Cambridge, England). 2012;139(16):2833–43. https://doi.org/10.1242/dev.065953.

    Article  CAS  Google Scholar 

  63. Aamodt KI, Powers AC. Signals in the pancreatic islet microenvironment influence beta-cell proliferation. Diabetes Obes Metab. 2017;19(Suppl 1):124–36. https://doi.org/10.1111/dom.13031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peiris H, Bonder CS, Coates PT, Keating DJ, Jessup CF. The beta-cell/EC axis: how do islet cells talk to each other? Diabetes. 2014;63(1):3–11. https://doi.org/10.2337/db13-0617.

    Article  CAS  PubMed  Google Scholar 

  65. Cao Z, Wang X. The endocrine role between beta cells and intra-islet endothelial cells. Endocr J. 2014;61(7):647–54.

    Article  CAS  PubMed  Google Scholar 

  66. Brissova M, Aamodt K, Brahmachary P, Prasad N, Hong JY, Dai C, et al. Islet microenvironment, modulated by vascular endothelial growth factor-a signaling, promotes beta cell regeneration. Cell Metab. 2014;19(3):498–511. https://doi.org/10.1016/j.cmet.2014.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived beta cells. Nat Cell Biol. 2019;21(2):263–74. https://doi.org/10.1038/s41556-018-0271-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the present and former students and post-doctorate fellows for their enormous contribution during the years.

Funding

Funding supporting part of the presented studies include JDRF, ISF, D-Cure, BioDisc and EFSD, “Autologous cell replacement therapy for diabetic patients by liver cells transdifferentiation” (Dia-cure), P_37_794, POC-A. 1- A.1.1.4-E-2015 (2016 - 2020)/ SMIS 106897, Orgenesis Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Ferber.

Ethics declarations

Conflict of Interest

Irit Meivar-Levy is a Senior Scientist at Orgenesis LTD. In addition, Dr. Meivar-Levy has a patent which is licensed to Orgenesis.

Sarah Ferber is the CSO of Orgenesis Inc. In addition, Dr. Ferber has several patents on Transdifferentiation, which are licensed to Orgenesis.

Human and Animal Rights and Informed Consent

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of Sheba Medical Center Committee on Clinical Investigations (the institutional review board; 0395-13-SMC) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted and ethical approval was obtained from the Institutional Animal Care and Use Committee of Sheba Medical Center (1023/16, 732/12).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Immunology, Transplantation, and Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meivar-Levy, I., Ferber, S. Liver to Pancreas Transdifferentiation. Curr Diab Rep 19, 76 (2019). https://doi.org/10.1007/s11892-019-1198-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1198-2

Keywords

Navigation