Skip to main content

Advertisement

Log in

Multifaceted role of keratins in epithelial cell differentiation and transformation

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Keratins, the epithelial-predominant members of the intermediate filament superfamily, are expressed in a pairwise, tissue-specific and differentiation-dependent manner. There are 28 type I and 26 type II keratins, which share a common structure comprising a central coiled coil α-helical rod domain flanked by two nonhelical head and tail domains. These domains harbor sites for major posttranslational modifications like phosphorylation and glycosylation, which govern keratin function and dynamics. Apart from providing structural support, keratins regulate various signaling machinery involved in cell growth, motility, apoptosis etc. However, tissue-specific functions of keratins in relation to cell proliferation and differentiation are still emerging. Altered keratin expression pattern during and after malignant transformation is reported to modulate different signaling pathways involved in tumor progression in a context-dependent fashion. The current review focuses on the literature related to the role of keratins in the regulation of cell proliferation, differentiation and transformation in different types of epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adriance MC, Inman JL, Petersen OW and Bissell MJ 2005 Myoepithelial cells: Good fences make good neighbors. Breast Cancer Res. 7 190–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alam H, Gangadaran P, Bhate AV, Chaukar DA, Sawant SS, Tiwari R, Bobade J, Kannan S, D’Cruz AK, Kane S and Vaidya MM 2011a Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients. PloS One 6 e27767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alam H, Kundu ST, Dalal SN and Vaidya MM 2011b Loss of keratins 8 and 18 leads to alterations in alpha6beta4-integrin-mediated signalling and decreased neoplastic progression in an oral-tumour-derived cell line. J. Cell Sci. 124 2096–2106

    CAS  PubMed  Google Scholar 

  • Alam H, Sehgal L, Kundu ST, Dalal SN and Vaidya MM 2011c Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol. Biol. Cell 22 4068–4078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albers KM 1996 Keratin biochemistry. Clin. Dermatol. 14 309–320

    CAS  PubMed  Google Scholar 

  • Alonso A, Greenlee M, Matts J, Kline J, Davis KJ and Miller RK 2015 Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 72 305–339

    CAS  Google Scholar 

  • Ambatipudi S, Bhosale PG, Heath E, Pandey M, Kumar G, Kane S, Patil A, Maru GB, Desai RS, Watt FM and Mahimkar MB 2013 Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse. PloS One 8 e70688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ausch C, Buxhofer-Ausch V, Olszewski U, Schiessel R, Ogris E, Hinterberger W and Hamilton G 2009 Circulating cytokeratin 18 fragment m65 – a potential marker of malignancy in colorectal cancer patients. J. Gastrointestinal Surg.: Official J. Soc. Surg. Alimentary Tract 13 2020–2026

    Google Scholar 

  • Beil M, Micoulet A, von Wichert G, Paschke S, Walther P, Omary MB, Van Veldhoven PP, Gern U, Wolff-Hieber E, Eggermann J, Waltenberger J, Adler G, Spatz J and Seufferlein T 2003 Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature Cell Biology. 5 803–811

    CAS  PubMed  Google Scholar 

  • Block RJ 1951 Chemical classification of keratins. Ann. New York Acad. Sci. 53 608–612

    CAS  Google Scholar 

  • Bloor BK, Seddon SV and Morgan PR 2000 Gene expression of differentiation-specific keratins (K4, K13, K1 and K10) in oral non-dysplastic keratoses and lichen planus. J. Oral Pathol. Med.: Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. of Oral Pathol. 29 376–384

    CAS  Google Scholar 

  • Bloor BK, Seddon SV and Morgan PR 2001 Gene expression of differentiation-specific keratins in oral epithelial dysplasia and squamous cell carcinoma. Oral Oncol. 37 251–261

    CAS  PubMed  Google Scholar 

  • Bonora M, Wieckowsk MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L and Pinton P 2015 Molecular mechanisms of cell death: Central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34 1608

    CAS  PubMed  Google Scholar 

  • Brown CH 1950 Keratins in invertebrates. Nature 166 439

    CAS  PubMed  Google Scholar 

  • Buhler H and Schaller G 2005 Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo. Mol. Cancer Res.: MCR 3 365–371

    PubMed  Google Scholar 

  • Busch T, Armacki M, Eiseler T, Joodi G, Temme C, Jansen J, von Wichert G, Omary MB, Spatz J and Seufferlein T 2012 Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. J. Cell Sci. 125 2148–2159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Candi E, Tarcsa E, Digiovanna JJ, Compton JG, Elias PM, Marekov LN and Steinert PM 1998 A highly conserved lysine residue on the head domain of type II keratins is essential for the attachment of keratin intermediate filaments to the cornified cell envelope through isopeptide crosslinking by transglutaminases. Proc. Natl. Acad. Sci. USA 95 2067–2072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casanova ML, Bravo A, Martinez-Palacio J, Fernandez-Acenero MJ, Villanueva C, Larcher F, Conti CJ and Jorcano JL 2004 Epidermal abnormalities and increased malignancy of skin tumors in human epidermal keratin 8-expressing transgenic mice. FASEB J. 18 1556–1558

    CAS  PubMed  Google Scholar 

  • Chaudhari PR and Vaidya MM 2015 Versatile hemidesmosomal linker proteins: structure and function. Histol. Histopathol. 30 425–434

    CAS  PubMed  Google Scholar 

  • Chen J, Cheng X, Merched-Sauvage M, Caulin C, Roop DR and Koch PJ 2006 An unexpected role for keratin 10 end domains in susceptibility to skin cancer. J. Cell Sci. 119 5067–5076

    CAS  PubMed  Google Scholar 

  • Chen L, Wang Y, Zhao L, Chen W, Dong C, Zhao X and Li X 2014 Hsp74, a potential bladder cancer marker, has direct interaction with keratin 1. J. Immunol. Res. 2014 492849

    PubMed  PubMed Central  Google Scholar 

  • Chisholm JC and Houliston E 1987 Cytokeratin filament assembly in the preimplantation mouse embryo. Development 101 565–582

    CAS  PubMed  Google Scholar 

  • Chou CF, Smith AJ and Omary MB 1992 Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J. Biol. Chem. 267 3901–3906

    CAS  PubMed  Google Scholar 

  • Coulombe PA and Omary MB 2002 ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14 110–122

    CAS  PubMed  Google Scholar 

  • Coulombe PA, Tong X, Mazzalupo S, Wang Z and Wong P 2004 Great promises yet to be fulfilled: Defining keratin intermediate filament function in vivo. Eur. J. Cell Biol. 83 735–746

    CAS  PubMed  Google Scholar 

  • Dakir EH, Feigenbaum L and Linnoila RI 2008 Constitutive expression of human keratin 14 gene in mouse lung induces premalignant lesions and squamous differentiation. Carcinogenesis 29 2377–2384

    CAS  Google Scholar 

  • Desai BV, Harmon RM and Green KJ 2009 Desmosomes at a glance. J. Cell Sci. 122 4401–4407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dmello C, Sawant S, Alam H, Gangadaran P, Mogre S, Tiwari R, D’Souza Z, Narkar M, Thorat R, Patil K, Chaukar D, Kane S and Vaidya M 2017 Vimentin regulates differentiation switch via modulation of keratin 14 levels and their expression together correlates with poor prognosis in oral cancer patients. PloS One 12 e0172559

    PubMed  PubMed Central  Google Scholar 

  • Eckert RL 1988 Sequence of the human 40-kDa keratin reveals an unusual structure with very high sequence identity to the corresponding bovine keratin. Proc. Natl. Acad. Sci. USA 85 1114–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortier AM, Asselin E and Cadrin M 2013 Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J.Biol. Chem. 288 11555–11571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franke WW, Schmid E, Schiller DL, Winter S, Jarasch ED, Moll R, Denk H, Jackson BW and Illmensee K 1982 Differentiation-related patterns of expression of proteins of intermediate-size filaments in tissues and cultured cells. Cold Spring Harb. Symp. Quant. Biol. 46 431–453

    PubMed  Google Scholar 

  • Fuchs E and Green H 1980 Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19 1033–1042

    CAS  PubMed  Google Scholar 

  • Gao J, Lv F, Li J, Wu Z and Qi J 2014 Serum cytokeratin 19 fragment, CK19–2G2, as a newly identified biomarker for lung cancer. PloS One 9 e101979

    PubMed  PubMed Central  Google Scholar 

  • Gilbert S, Loranger A and Marceau N 2004 Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol. Cell. Biol. 24 7072–7081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harbaum L, Pollheimer MJ, Kornprat P, Lindtner RA, Schlemmer A, Rehak P and Langner C 2012 Keratin 20 – a diagnostic and prognostic marker in colorectal cancer? Histol. Histopathol. 27 347–356

    PubMed  Google Scholar 

  • He T, Stepulak A, Holmstrom TH, Omary MB and Eriksson JE 2002 The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem. 277 10767–10774

    CAS  PubMed  Google Scholar 

  • Hermeking H and Benzinger A 2006 14-3-3 proteins in cell cycle regulation. Sem. Cancer Biol. 16 183–192

    CAS  Google Scholar 

  • Iyer SV, Dange PP, Alam H, Sawant SS, Ingle AD, Borges AM, Shirsat NV, Dalal SN and Vaidya MM 2013 Understanding the role of keratins 8 and 18 in neoplastic potential of breast cancer derived cell lines. PloS One 8 e53532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaitovich A, Mehta S, Na N, Ciechanover A, Goldman RD and Ridge KM 2008 Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells. J. Biol. Chem. 283 25348–25355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JC, Hopkinson SB and Goldfinger LE 1998 Structure and assembly of hemidesmosomes. BioEssays: News and Rev. Mol. Cell. Dev. Biol. 20 488–494

    CAS  Google Scholar 

  • Ju JH, Yang W, Lee KM, Oh S, Nam K, Shim S, Shin SY, Gye MC, Chu IS and Shin I 2013 Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clin. Cancer Res.: Official J. Am. Assoc. Cancer Res. 19 4335–4346

    CAS  Google Scholar 

  • Kanojia D, Sawant SS, Borges AM, Ingle AD and Vaidya MM 2012 Alterations in keratins and associated proteins during 4- Nitroquinoline-1-oxide induced rat oral carcinogenesis. J. Carcinogenesis 11 14

    CAS  Google Scholar 

  • Khapare N, Kundu ST, Sehgal L, Sawant M, Priya R, Gosavi P, Gupta N, Alam H, Karkhanis M, Naik N, Vaidya MM and Dalal SN 2012 Plakophilin3 loss leads to an increase in PRL3 levels promoting K8 dephosphorylation, which is required for transformation and metastasis. PloS One 7 e38561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S and Coulombe PA 2007 Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21 1581–1597

    CAS  PubMed  Google Scholar 

  • Kim S, Wong P and Coulombe PA 2006 A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441 362–365

    CAS  PubMed  Google Scholar 

  • Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW and Gygi SP 2011 Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44 325–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Choi WJ and Lee CH 2015 Phosphorylation and reorganization of keratin networks: Implications for carcinogenesis and epithelial mesenchymal transition. Biomolecules Therapeutics 23 301–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirfel J, Magin TM and Reichelt J 2003 Keratins: A structural scaffold with emerging functions. Cell. Mol. Life Sci.: CMLS. 60 56–71

    CAS  Google Scholar 

  • Koch PJ and Roop DR 2004 The role of keratins in epidermal development and homeostasis – Going beyond the obvious. J. Invest. Dermatol. 123 x–xi

    CAS  PubMed  Google Scholar 

  • Konig K, Meder L, Kroger C, Diehl L, Florin A, Rommerscheidt-Fuss U, Kahl P, Wardelmann E, Magin TM, Buettner R and Heukamp LC 2013 Loss of the keratin cytoskeleton is not sufficient to induce epithelial mesenchymal transition in a novel KRAS driven sporadic lung cancer mouse model. PloS One 8 e57996

    PubMed  PubMed Central  Google Scholar 

  • Ku NO and Omary MB 1995 Identification and mutational analysis of the glycosylation sites of human keratin 18. J. Biol. Chem. 270 11820–11827

    CAS  PubMed  Google Scholar 

  • Ku NO, Zhou X, Toivola DM and Omary MB 1999 The cytoskeleton of digestive epithelia in health and disease. Am. J. Physiol. 277 G1108–G1137

    CAS  PubMed  Google Scholar 

  • Ku NO, Toivola DM, Strnad P and Omary MB 2010 Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat. Cell Biol. 12 876–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchma MH, Kim JH, Muller MT and Arlen PA 2012 Prostate cancer cell surface-associated keratin 8 and its implications for enhanced plasmin activity. Protein J. 31 195–205

    CAS  PubMed  Google Scholar 

  • Lee EJ, Park MK, Kim HJ, Kim EJ, Kang GJ, Byun HJ and Lee CH 2016 Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells. Biochim. Biophys. Acta 1863 1157–1169

    CAS  PubMed  Google Scholar 

  • Liu L, Dopping-Hepenstal PJ, Lovell PA, Michael M, Horn H, Fong K, Lai-Cheong JE, Mellerio JE, Parsons M and McGrath JA 2012 Autosomal recessive epidermolysis bullosa simplex due to loss of BPAG1-e expression. J. Invest. Dermatol. 132 742–744

    CAS  PubMed  Google Scholar 

  • Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E and Fuchs E 1995 The basal keratin network of stratified squamous epithelia: Defining K15 function in the absence of K14. J. Cell Biol. 129 1329–1344

    CAS  PubMed  Google Scholar 

  • Loffek S, Woll S, Hohfeld J, Leube RE, Has C, Bruckner-Tuderman L and Magin TM 2010 The ubiquitin ligase CHIP/STUB1 targets mutant keratins for degradation. Hum. Mutat. 31 466–476

    PubMed  Google Scholar 

  • Magin TM, Vijayaraj P and Leube RE 2007 Structural and regulatory functions of keratins. Exp. Cell Res. 313 2021–2032

    CAS  PubMed  Google Scholar 

  • Makar IA, Havryliak VV and Sedilo HM 2007 Genetic and biochemical aspects of keratin synthesis by hair follicles. TSitol. I Genet. 41 75–79

    CAS  Google Scholar 

  • Matros E, Bailey G, Clancy T, Zinner M, Ashley S, Whang E and Redston M 2006 Cytokeratin 20 expression identifies a subtype of pancreatic adenocarcinoma with decreased overall survival. Cancer 106 693–702

    CAS  PubMed  Google Scholar 

  • McGowan K and Coulombe PA 1998a The wound repair-associated keratins 6, 16, and 17. Insights into the role of intermediate filaments in specifying keratinocyte cytoarchitecture. Sub-cellular Biochem. 31 173–204

    CAS  Google Scholar 

  • McGowan KM and Coulombe PA 1998b Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J. Cell Biol. 143 469–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami T, Cheng J, Maruyama S, Kobayashi T, Funayama A, Yamazaki M, Adeola HA, Wu L, Shingaki S, Saito C and Saku T 2011 Emergence of keratin 17 vs. Loss of keratin 13: Their reciprocal immunohistochemical profiles in oral carcinoma in situ. Oral Oncol. 47 497–503

    CAS  PubMed  Google Scholar 

  • Ming M, Qiang L, Zhao B and He YY 2014 Mammalian SIRT2 inhibits keratin 19 expression and is a tumor suppressor in skin. Exp. Dermatol. 23 207–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuuchi E, Semba S, Kodama Y and Yokozaki H 2009 Down-modulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression. Int. J. Cancer 124 1802–1810

    CAS  PubMed  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B and Krepler R 1982 The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell 31 11–24

    CAS  PubMed  Google Scholar 

  • Moll R, Achtstatter T, Becht E, Balcarova-Stander J, Ittensohn M and Franke WW 1988 Cytokeratins in normal and malignant transitional epithelium. Maintenance of expression of urothelial differentiation features in transitional cell carcinomas and bladder carcinoma cell culture lines. Am. J. Pathol. 132 123–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moll R, Schiller DL and Franke WW 1990 Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J. Cell Biol. 111 567–580

    CAS  PubMed  Google Scholar 

  • Nemes Z, Petrovski G and Fesus L 2005 Tools for the detection and quantitation of protein transglutamination. Anal. Biochem. 342 1–10

    CAS  PubMed  Google Scholar 

  • O’Farrell PZ, Goodman HM and O’Farrell PH 1977 High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12 1133–1141

    PubMed  Google Scholar 

  • Omary MB, Ku NO, Liao J and Price D 1998 Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell Biochem. 31 105–140

    CAS  PubMed  Google Scholar 

  • Omary MB, Coulombe PA and McLean WH 2004 Intermediate filament proteins and their associated diseases. NewEngl. J. Med. 351 2087–2100

    CAS  Google Scholar 

  • Omary MB, Ku NO, Tao GZ, Toivola DM and Liao J 2006 ‘Heads and tails’ of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci. 31 383–394

    CAS  PubMed  Google Scholar 

  • Paladini RD and Coulombe PA 1998 Directed expression of keratin 16 to the progenitor basal cells of transgenic mouse skin delays skin maturation. J. Cell Biol. 142 1035–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paramio JM 1999 A role for phosphorylation in the dynamics of keratin intermediate filaments. Eur. J. Cell Biol. 78 33–43

    CAS  PubMed  Google Scholar 

  • Paramio JM, Casanova ML, Segrelles C, Mittnacht S, Lane EB and Jorcano JL 1999 Modulation of cell proliferation by cytokeratins K10 and K16. Mol. Cell. Biol. 19 3086–3094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paramio JM, Segrelles C, Ruiz S and Jorcano JL 2001 Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol. Cell. Biol. 21 7449–7459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parekh HK and Simpkins H 1995 The differential expression of cytokeratin 18 in cisplatin-sensitive and -resistant human ovarian adenocarcinoma cells and its association with drug sensitivity. Cancer Res. 55 5203–5206

    CAS  PubMed  Google Scholar 

  • Pekny M and Lane EB 2007 Intermediate filaments and stress. Exp. Cell Res. 313 2244–2254

    CAS  PubMed  Google Scholar 

  • Peters B, Kirfel J, Bussow H, Vidal M and Magin TM 2001 Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol. Biol. Cell 12 1775–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl M, Olsen KE, Holst R, Donnem T, Busund LT, Bremnes RM, Al-Saad S, Andersen S, Richardsen E, Ditzel HJ and Hansen O 2016 Keratin 34betaE12/keratin7 expression is a prognostic factor of cancer-specific and overall survival in patients with early stage non-small cell lung cancer. Acta Oncol. 55 167–177

    PubMed  Google Scholar 

  • Porter RM and Lane EB 2003 Phenotypes, genotypes and their contribution to understanding keratin function. Trends Genet. 19 278–285

    CAS  PubMed  Google Scholar 

  • Reichelt J and Magin TM 2002 Hyperproliferation, induction of c-Myc and 14-3-3sigma, but no cell fragility in keratin-10-null mice. J. Cell Sci. 115 2639–2650

    CAS  PubMed  Google Scholar 

  • Reichelt J, Breiden B, Sandhoff K and Magin TM 2004a Loss of keratin 10 is accompanied by increased sebocyte proliferation and differentiation. Eur. J. Cell Biol. 83 747–759

    CAS  PubMed  Google Scholar 

  • Reichelt J, Furstenberger G and Magin TM 2004b Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice. J. Invest. Dermatol. 123 973–981

    CAS  PubMed  Google Scholar 

  • Ricciardelli C, Lokman NA, Pyragius CE, Ween MP, Macpherson AM, Ruszkiewicz A, Hoffmann P and Oehler MK 2017 Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance. Oncotarget 8 17819–17832

    PubMed  PubMed Central  Google Scholar 

  • Rogel MR, Jaitovich A and Ridge KM 2010 The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation. Proc. Am. Thorac. Soc. 7 71–76

    PubMed  PubMed Central  Google Scholar 

  • Rolli CG, Seufferlein T, Kemkemer R and Spatz JP 2010 Impact of tumor cell cytoskeleton organization on invasiveness and migration: A microchannel-based approach. PloS One 5 e8726

    PubMed  PubMed Central  Google Scholar 

  • Roop DR, Krieg TM, Mehrel T, Cheng CK and Yuspa SH 1988 Transcriptional control of high molecular weight keratin gene expression in multistage mouse skin carcinogenesis. Cancer Res. 48 3245–3252

    CAS  PubMed  Google Scholar 

  • Rotty JD and Coulombe PA 2012 A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. J. Cell Biol. 197 381–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotty JD, Hart GW and Coulombe PA 2010 Stressing the role of O-GlcNAc: Linking cell survival to keratin modification. Nat. Cell Biol. 12 847–849

    CAS  PubMed  Google Scholar 

  • Sankar S, Bell R, Stephens B, Zhuo R, Sharma S, Bearss DJ and Lessnick SL 2013 Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. Oncogene 32 5089–5100

    CAS  PubMed  Google Scholar 

  • Santos M, Paramio JM, Bravo A, Ramirez A and Jorcano JL 2002 The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. J. Biol. Chem. 277 19122–19130

    CAS  PubMed  Google Scholar 

  • Santos M, Rio P, Ruiz S, Martinez-Palacio J, Segrelles C, Lara MF, Segovia JC and Paramio JM 2005 Altered T cell differentiation and notch signaling induced by the ectopic expression of keratin K10 in the epithelial cells of the thymus. J. Cell. Biochem. 95 543–558

    CAS  PubMed  Google Scholar 

  • Sawant SS, Chaukar DA, Joshi SS, Dange PP, Kannan S, Kane S, D’Cruz and AK and Vaidya MM 2011 Prognostic value of tissue polypeptide antigen in oral squamous cell carcinoma. Oral Oncol. 47 114–120

    CAS  PubMed  Google Scholar 

  • Sawant S, Vaidya M, Chaukar D, Gangadaran P, Singh AK, Rajadhyax S, Kannan S, Kane S, Pagare S and Kannan R 2014 Clinicopathological features and prognostic implications of loss of K5 and gain of K1, K8 and K18 in oral potentially malignant lesions and squamous cell carcinomas: An immunohistochemical analysis. Edorium J. Tumor Biol. 1 1–22

    Google Scholar 

  • Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA and Wright MW 2006 New consensus nomenclature for mammalian keratins. J. Cell Biol. 174 169–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snider NT and Omary MB 2014 Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15 163–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snider NT, Weerasinghe SV, Iniguez-Lluhi JA, Herrmann H and Omary MB 2011 Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation. J. Biol. Chem. 286 2273–2284

    CAS  PubMed  Google Scholar 

  • Snider NT, Leonard JM, Kwan R, Griggs NW, Rui L and Omary MB 2013 Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. J. Cell Biol. 200 241–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava SS, Alam H, Patil SJ, Shrinivasan R, Raikundalia S, Chaudhari PR and Vaidya MM 2018 Keratin 5/14mediated cell differentiation and transformation are regulated by TAp63 and Notch1 in oral squamous cell carcinomaderived cells. Oncol. Rep. 39 2393–2401

    CAS  PubMed  Google Scholar 

  • Steinert PM, Wantz ML and Idler WW 1982 O-phosphoserine content of intermediate filament subunits. Biochemistry 21 177–183

    CAS  PubMed  Google Scholar 

  • Steinert PM, Steven AC and Roop DR 1985 The molecular biology of intermediate filaments. Cell 42 411–420

    CAS  PubMed  Google Scholar 

  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M and Seufferlein T 2005 Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1 15–30

    CAS  PubMed  Google Scholar 

  • Takahashi K, Paladini RD and Coulombe PA 1995 Cloning and characterization of multiple human genes and cDNAs encoding highly related type II keratin 6 isoforms. J. Biol. Chem. 270 18581–18592

    CAS  PubMed  Google Scholar 

  • Tamiji S, Beauvillain JC, Mortier L, Jouy N, Tual M, Delaporte E, Formstecher P, Marchetti P and Polakowska R 2005 Induction of apoptosis-like mitochondrial impairment triggers antioxidant and Bcl-2-dependent keratinocyte differentiation. J. Invest. Dermatol. 125 647–658

    CAS  PubMed  Google Scholar 

  • Tanaka T and Iino M 2015 Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal 27 1110–1119

    CAS  PubMed  Google Scholar 

  • Tao GZ, Toivola DM, Zhou Q, Strnad P, Xu B, Michie SA and Omary MB 2006 Protein phosphatase-2A associates with and dephosphorylates keratin 8 after hyposmotic stress in a site- and cell-specific manner. J. Cell Sci. 119 1425–1432

    CAS  PubMed  Google Scholar 

  • Tiwari R, Sahu I, Soni BL, Sathe GJ, Datta KK, Thapa P, Sinha S, Vadivel CK, Dhaka B, Gowda H and Vaidya MM 2017 Quantitative phosphoproteomic analysis reveals system-wide signaling pathways regulated by site-specific phosphorylation of keratin-8 in skin squamous cell carcinoma derived cell line. Proteomics 17

    Google Scholar 

  • Toivola DM, Goldman RD, Garrod DR and Eriksson JE 1997 Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. J. Cell Sci. 110 23–33

    CAS  PubMed  Google Scholar 

  • Toivola DM, Tao GZ, Habtezion A, Liao J and Omary MB 2005 Cellular integrity plus: Organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 15 608–617

    CAS  PubMed  Google Scholar 

  • Tomlinson DJ, Mulling CH and Fakler TM 2004 Invited review: Formation of keratins in the bovine claw: Roles of hormones, minerals, and vitamins in functional claw integrity. J. Dairy Sci. 87 797–809

    CAS  PubMed  Google Scholar 

  • Vaidya MM and Kanojia D 2007 Keratins: Markers of cell differentiation or regulators of cell differentiation? J. Biosci. 32 629–634

    CAS  PubMed  Google Scholar 

  • van de Rijn M, Perou CM, Tibshirani R, Haas P, Kallioniemi O, Kononen J, Torhorst J, Sauter G, Zuber M, Kochli OR, Mross F, Dieterich H, Seitz R, Ross D, Botstein D and Brown P 2002 Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am. J. Pathol. 161 1991–1996

    PubMed  PubMed Central  Google Scholar 

  • Verdin E and Ott M 2015 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16 258–264

    CAS  PubMed  Google Scholar 

  • Wiche G 1998 Role of plectin in cytoskeleton organization and dynamics. J. Cell Sci. 111 2477–2486

    CAS  PubMed  Google Scholar 

  • Wu H, Wang K, Liu W and Hao Q 2014 PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression. Biochem. Biophys. Res. Commun. 444 141–146

    CAS  PubMed  Google Scholar 

  • Wu H, Wang K, Liu W and Hao Q 2015 Recombinant adenovirus-mediated overexpression of PTEN and KRT10 improves cisplatin resistance of ovarian cancer in vitro and in vivo. Genet. Mol. Res.: GMR 14 6591–6597

    CAS  PubMed  Google Scholar 

  • Yan X, Shi Y, Kou B, Zhu Z, Chai J, Chen D and Guo H 2016 Keratin 18 phosphorylation increases autophagy of colorectal cancer HCT116 cells and enhanced its sensitivity to oxaliplatin. Xi bao yu fen zi mian yi xue za zhi = Chinese J. Cell. Mol. Immunol. 32 34–38

    Google Scholar 

  • Yang L, Fan X, Cui T, Dang E and Wang G 2017 Nrf2 promotes keratinocyte proliferation in psoriasis through up-regulation of keratin 6, keratin 16, and keratin 17. J. Invest. Dermatol. 137 2168–2176

    CAS  PubMed  Google Scholar 

  • Yi W, Peng J, Zhang Y, Fu F, Zou Q and Tang Y 2013 Differential protein expressions in breast cancer between drug sensitive tissues and drug resistant tissues. Gland Surg. 2 62–68

    PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhang R, Zou K, Yu W, Guo W, Gao Y, Li J, Li M, Tai Y, Huang W, Song C, Deng W and Cui X 2017 Keratin 23 promotes telomerase reverse transcriptase expression and human colorectal cancer growth. Cell Death Disease 8 e2961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Snider NT, Liao J, Li DH, Hong A, Ku NO, Cartwright CA and Omary MB 2010 Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PloS One 5 e13538

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milind M Vaidya.

Additional information

Communicated by Veena K Parnaik.

Corresponding editor: Veena K Parnaik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmello, C., Srivastava, S.S., Tiwari, R. et al. Multifaceted role of keratins in epithelial cell differentiation and transformation. J Biosci 44, 33 (2019). https://doi.org/10.1007/s12038-019-9864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9864-8

Keywords

Navigation