Skip to main content
Log in

The Role of Cytokeratins in Ensuring the Basic Cellular Functions and in Dignosis of Disorders

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Cytokeratins are a large group of intermediate filament proteins that form the cytoskeleton of epithelial cells and their appendages (hair, nails). Biochemically, cytokeratins are divided into two main types: acidic and basic. Each cytokeratin pair necessarily contains both acidic and basic cytokeratins in equimolar amounts. This significantly distinguishes cytokeratins from other intermediate filament proteins and is essential for proper organization of the cytoskeleton. Cytokeratins also provide signaling in the cell and participate in cell-cell adhesion, and apoptosis. Today, the general principles of cytokeratin expression at different stages of epithelial cell development are known. The expression of cytokeratins is organ-specific, depending on the type of epithelial cells, the degree of differentiation, and tissue development. Therefore, the cytokeratins profile can be used to diagnose various pathological processes. Special attention in the review is paid to cytokeratins 8, 18, and 19 as possible biomarkers of carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alam, H., Kundu, S.T., Dalal, S.N., and Vaidya, M.M., Loss of keratins 8 and 18 leads to alterations in α6β4-integrin-mediated signalling and decreased neoplastic progression in an oral-tumour-derived cell line, J. Cell Sci., 2011, vol. 124, no. 12, pp. 2096–2106. https://doi.org/10.1242/jcs.073585

    Article  CAS  PubMed  Google Scholar 

  2. Alsharif, S., Sharma, P., Bursch, K., Milliken, R., Lam, V., Fallatah, A., and Chung, B.M., Keratin 19 maintains E-cadherin localization at the cell surface and stabilizes cell-cell adhesion of MCF7 cells, Cell Adhes. Migr., 2021, vol. 15, no. 1, pp. 1−17. https://doi.org/10.1080/19336918.2020.1868694

    Article  CAS  Google Scholar 

  3. Awasthi, P., Thahriani, A., and Bhattacharya, A., (2016) Keratins or cytokeratins − a review article, J. Adv. Med. Dent. Sci. Res., doi.org/https://doi.org/10.21276/jamdsr.2016.4.4.30

  4. Baek, A.R., Seo, H.J., Lee, J.H., Park, S.W., Jang, A.S., Paik, S.H., and Kim, D.J., Prognostic value of baseline carcinoembryonic antigen and cytokeratin 19 fragment levels in advanced non-small cell lung cancer, Cancer Biomarkers, 2018, vol. 22, no. 1, pp. 55–62.

    Article  CAS  PubMed  Google Scholar 

  5. Bambang, I.F., Lu, D., Li, H., Chiu, L.L., Lau, Q.C., Koay, E., and Zhang, D., Cytokeratin 19 regulates endoplasmic reticulum stress and inhibits ERp29 expression via p38 MAPK/XBP-1 signaling in breast cancer cells, Exp. Cell Res., 2009, vol. 315, no. 11, pp. 1964−1974. https://doi.org/10.1016/j.yexcr.2009.02.017

    Article  CAS  PubMed  Google Scholar 

  6. Barak, V., Goike, H., Panaretakis, K.W., and Einarsson, R., Clinical utility of cytokeratins as tumor markers, Clin. Biochem., 2004, vol. 37, pp. 529−540. https://doi.org/10.1016/j.clinbiochem.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  7. Bernerd, F., Magnaldo, T., Freedberg, I.M., and Blumenberg, M., Expression of the carcinoma-associated keratin K6 and the role of AP-1 proto-oncoproteins, Gene Exp., 1993, vol. 3, no. 2, pp. 187–199.

    CAS  Google Scholar 

  8. Bozza, W.P., Zhang, Y., and Zhang, B., Cytokeratin 8/18 protects breast cancer cell lines from TRAIL-induced apoptosis, Oncotarget, 2018, vol. 9, pp. 23264–23273. https://doi.org/10.18632/oncotarget.25297

    Article  PubMed  PubMed Central  Google Scholar 

  9. Calvete, J., Larrinaga, G., Errarte, P., Martín, A.M., Dotor, A., Esquinas, C., and Angulo, J.C., The coexpression of fibroblast activation protein (FAP) and basal-type markers (CK 5/6 and CD44) predicts prognosis in high-grade invasive urothelial carcinoma of the bladder, Hum. Pathol., 2019, vol. 91, pp. 61−68. https://doi.org/10.1016/j.humpath.2019.07.002

    Article  CAS  PubMed  Google Scholar 

  10. Chan, J.K., Yuen, D., Too, M., Sun, Y., Willard, B., Man, D., and Tam, C., Keratin 6a reorganization for ubiquitin–proteasomal processing is a direct antimicrobial response, J. Cell Biol., 2018, vol. 217, no. 2, pp. 731−744. https://doi.org/10.1083/jcb.201704186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, B., Xu, X., Lin, D.D., Chen, X., Xu, Y.T., Liu, X., and Dong, W.G., KRT18 modulates alternative splicing of genes involved in proliferation and apoptosis processes in both gastric cancer cells and clinical samples, Front. Genet., 2021, vol. 12, p. 635429. https://doi.org/10.3389/fgene.2021.635429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, W., Czerniak, B., Ochoa, A., Su, X., Siefker-Radtke, A., Dinney, C., and McConkey, D.J., Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer, Nat. Rev. Urol., 2014, vol. 11, pp. 400−410. https://doi.org/10.1038/nrurol.2014.129

    Article  CAS  PubMed  Google Scholar 

  13. Choi, W., Porten, S., Kim, S., Willis, D., Plimack, E., Hoffman-Censits, J., and McConkey, D.J., Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy, Cancer Cell, 2014, vol. 25, no. 2, pp. 152−165. https://doi.org/10.1016/j.ccr.2014.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dmello, C., Srivastava, S.S., Tiwari, R., Chaudhari, P.R., Sawant, S., and Vaidya, M.M., Multifaceted role of keratins in epithelial cell differentiation and transformation, J. Biosci., 2019, vol. 44, no. 2, p. 33. https://doi.org/10.1007/s12038-019-9864-8

    Article  PubMed  Google Scholar 

  15. Guy, C.D., Suzuki, A., Burchette, J.L., Brunt, E.M., Abdelmalek, M.F., and Cardona, D., Costaining for keratins 8/18 plus ubiquitin improves detection of hepatocyte injury in nonalcoholic fatty liver disease, Hum. Pathol., 2012, vol. 43, no. 6, pp. 790−800. https://doi.org/10.1016/j.humpath.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  16. Havryliak, V. and Mykhaliuk, V., The comparative analysis of the methods for keratin extraction from sheep wool and human hair, Animal Biol., 2020, vol. 22, pp. 9–12. https://doi.org/10.15407/animbiol22.04.009

    Article  Google Scholar 

  17. Huang, Y., Yang, L., Lin, Y., Chang, X., Wu, H., and Chen, Y., Prognostic value of non-invasive serum Cytokeratin 18 detection in gastrointestinal cancer: a meta-analysis, J. Cancer, 2019, vol. 10, no. 20, pp. 4814–4823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iyer, S.V., Dange, P.P., Alam, H., Sawant, S.S., Ingle, A.D., Borges, A.M., Shirsat, N.V., Dalal, S.N., and Vaidya, M.M., Understanding the role of keratins 8 and 18 in neoplastic potential of breast cancer derived cell lines, PloS One, 2013, vol. 8, no. 1, p. e53532. https://doi.org/10.1371/journal.pone.0053532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacob, J.T., Coulombe, P.A., Kwan, R., and Omary, M.B., Types I and II keratin intermediate filaments, Cold Spring Harbor Perspect. Biol., 2018, vol. 10, no. 4, pp. 1–10. https://doi.org/10.1101/cshperspect.a018275

    Article  CAS  Google Scholar 

  20. Jiang, C.K., Magnaldo, T., Ohtsuki, M., Freedberg, I.M., Bernerd, F., and Blumenberg, M., Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16, Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, no. 14, pp. 6786–6790. https://doi.org/10.1073/pnas.90.14.6786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ju, J.H., Yang, W., Lee, K.M., Oh, S., Nam, K., Shim, S., and Shin, I., Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells, Clin. Cancer Res., 2013, vol. 19, pp. 4335−4346. https://doi.org/10.1158/1078-0432.CCR-12-3295

    Article  CAS  PubMed  Google Scholar 

  22. Kanapathy, M., Hachach-Haram, N., Bystrzonowski, N., Connelly, J.T., O’Toole, E.A., Becker, D.L., and Richards, T., Epidermal grafting for wound healing: a review on the harvesting systems, the ultrastructure of the graft and the mechanism of wound healing, Int. Wound J., 2017, vol. 14, pp. 16−23. https://doi.org/10.1111/iwj.12686

    Article  PubMed  Google Scholar 

  23. Kanapathy, M., Hachach-Haram, N., Bystrzonowski, N., Becker, D.L., Mosahebi, A., and Richards, T., Epidermal graft encourages wound healing by down-regulation of gap junctional protein and activation of wound bed without graft integration as opposed to split-thickness skin graft, Int. Wound J., 2021, vol. 18, no. 3, pp. 332−341. https://doi.org/10.1111/iwj.13536

    Article  PubMed  PubMed Central  Google Scholar 

  24. Komine, M., Rao, L.S., Freedberg, I.M., Simon, M., Milisavljevic, V., and Blumenberg, M., Interleukin-1 induces transcription of keratin K6 in human epidermal keratinocytes, J. Invest. Dermatol., 2001, vol. 116, no. 2, pp. 330–338. https://doi.org/10.1046/j.1523-1747.2001.01249.x

    Article  CAS  PubMed  Google Scholar 

  25. Kuburich, N.A., den Hollander, P., Pietz, J.T., and Mani, S.A., Vimentin and cytokeratin: good alone, bad together, Semin. Cancer Biol., 2021. https://doi.org/10.1016/j.semcancer.2021.12.006

  26. Kucukoglu, O., Guldiken, N., Chen, Y., Usachov, V., El-Heliebi, A., Haybaeck, J., and Strnad, P., High-fat diet triggers Mallory-Denk body formation through misfolding and crosslinking of excess keratin 8, Hepatology, 2014, vol. 60, no. 1, pp. 169–178. https://doi.org/10.1002/hep.27068

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, A. and Jagannathan, N., Cytokeratin: A review on current concepts, Int. J. Orofacial Biol., 2018, vol. 2, no. 1, pp. 6−11.

    Article  Google Scholar 

  28. Kurokawa, I., Mizutani, H., Kusumoto, K., Nishijima, S., Tsujita-Kyutoku, M., Shikata, N., Tsubura, A., Cytokeratin, filaggrin, and p63 expression in reepithelialization during human cutaneous wound healing, Wound Repair Regener., 2006, vol. 14, pp. 38–45. https://doi.org/10.1111/j.1524-475X.2005.00086.x

    Article  Google Scholar 

  29. Laly, A.C., Sliogeryte, K., Pundel, O.J., Ross, R., Keeling, M.C., Avisetti, D., Waseem, A., Gavara, N., and Connelly, J.T., The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction, Sci. Adv., 2021, vol. 7, no. 5, p. eabd6187.

  30. Linder, S., Cytokeratin markers come of age, Tumor Biol., 2007, vol. 28, no. 4, pp. 189−195.

    Article  CAS  Google Scholar 

  31. Lowery, E.R., Kuczmarski, H., and Herrmann, R.D., Intermediate filaments play a pivotal role in regulating cell architecture and function, J. Biol. Chem., 2015, vol. 290, no. 28, pp. 17145–17153. :doi https://doi.org/10.1074/jbc.R115.640359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McCarthy, M.K. and Weinberg, J.B., The immunoproteasome and viral infection: a complex regulator of inflammation, Front. Microbiol., 2015, vol. 6, p. 21. https://doi.org/10.3389/fmicb.2015.00021

    Article  PubMed  PubMed Central  Google Scholar 

  33. Menz, A., Weitbrecht, T., Gorbokon, N., Büscheck, F., Luebke, A.M., Kluth, M., and Simon, R., Diagnostic and prognostic impact of cytokeratin 18 expression in human tumors: a tissue microarray study on 11,952 tumors, Mol. Med., 2021, vol. 27, no. 1, p. 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moll, R., Franke, W.W., Schiller, D.L., Geiger, B., and Krepler, R., The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells, Cell, 1982, vol. 31, pp. 11−24. https://doi.org/10.1016/0092-8674(82)90400-7

    Article  CAS  PubMed  Google Scholar 

  35. Moll, R., Divo, M., and Langbein, L., The human keratins: biology and pathology, Histochem. Cell Biol., 2008, vol. 129, pp. 705−733. https://doi.org/10.1007/s00418-008-0435-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohman, T., Lietzén, N., Valimaki, E., Melchjorsen, J., Matikainen, S., and Nyman, T.A., Cytosolic RNA recognition pathway activates 14-3-3 protein mediated signaling and caspase-dependent disruption of cytokeratin network in human keratinocytes, J. Proteome Res., 2010, vol. 9, no. 3, pp. 1549−1564. https://doi.org/10.1021/pr901040u

    Article  CAS  PubMed  Google Scholar 

  37. Paramio, J.M., Casanova, M.L., Segrelles, C., Mittnacht, S., Lane, E.B., and Jorcano, J.L., Modulation of cell proliferation by cytokeratins K10 and K16, Mol. Cell. Biol., 1999, vol. 19, no. 4, pp. 3086−3094. https://doi.org/10.1128/MCB.19.4.3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raja, S.K., Garcia, M.S., and Isseroff, R.R., Wound re-epithelialization: modulating keratinocyte migration in wound healing, Front. Biosci., 2007, vol. 12, no. 8, pp. 2849−2868.

    Article  CAS  PubMed  Google Scholar 

  39. Santos, M., Paramio, J.M., Bravo, A., Ramirez, A., and Jorcano, J.L., The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis, J. Biol. Chem., 2002, vol. 277, no. 21, pp. 19122−19130.

    Article  CAS  PubMed  Google Scholar 

  40. Sawant, M.S. and Leube, R.E., Consequences of keratin phosphorylation for cytoskeletal organization and epithelial functions, Int. Rev. Cell Mol. Biol., 2017, vol. 330, pp. 171−225. https://doi.org/10.1016/bs.ircmb.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  41. Seiler, R., Ashab, H.D., Erho, N., van Rhijn, B.W., Winters, B., Douglas, J., and Black, P.C., Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy, Eur. Urol., 2017, vol. 72, no. 4, pp. 544−554.

    Article  CAS  PubMed  Google Scholar 

  42. Shafraz, O., Rübsam, M., Stahley, S.N., Caldara, A.L., Kowalczyk, A.P., Niessen, C.M., and Sivasankar, S., E-cadherin binds to desmoglein to facilitate desmosome assembly, J. Invest. Dermatol., 2018. https://doi.org/10.1016/j.jid.2018.03.881

  43. Sharma, P., Alsharif, S., Bursch, K., Parvathaneni, S., Anastasakis, D.G., Chahine, J., and Chung, B.M., Keratin 19 regulates cell cycle pathway and sensitivity of breast cancer cells to CDK inhibitors, Sci. Rep., 2019, vol. 9, p. 14650. https://doi.org/10.1038/s41598-019-51195-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Snider, N.T. and Omary, M.B., Post-translational modifications of intermediate filament proteins: mechanisms and functions, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, pp. 163–177. https://doi.org/10.1038/nrm3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Snider, N.T., Park, H., and Omary, M.B., A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 protein insolubility and filament organization, J. Biol. Chem., 2013, vol. 288, no. 43, pp. 31329−31337. https://doi.org/10.1074/jbc.m113.502724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strelkov, S.V., Herrmann, H., and Aebi, U., Molecular architecture of intermediate filaments, BioEssays, 2003, vol. 25, no. 3, pp. 243−251. https://doi.org/10.1002/bies.10246

    Article  CAS  PubMed  Google Scholar 

  47. Takayama, Y., Molecular regulation of skin wound healing, Lactoferrin and its Role in Wound Healing, Springer-Verlag, 2012, pp. 1–23. https://doi.org/10.1007/978-94-007-2467-9_1

    Book  Google Scholar 

  48. Tam, C., Mun, J.J., Evans, D.J., and Fleiszig, S.M., Cytokeratins mediate epithelial innate defense through their antimicrobial properties, J. Clin. Invest., 2012, vol. 122, pp. 3665–3677. https://doi.org/10.1172/JCI64416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Toivola, D.M., Ku, N.O., Resurreccion, E.Z., Nelson, D.R., Wright, T.L., and Omary, M.B., Keratin 8 and 18 hyperphosphorylation is a marker of progression of human liver disease, Hepatology, 2004, vol. 40, no. 2, pp. 459−466. https://doi.org/10.1002/hep.20277

    Article  CAS  PubMed  Google Scholar 

  50. Toivola, D.M., Boor, P., Alam, C., and Strnad, P., Keratins in health and disease, Curr. Opin. Cell Biol., 2015, vol. 32, pp. 73−81. https://doi.org/10.1016/j.ceb.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  51. Ueno, T., Toi, M., and Linder, S., Detection of epithelial cell death in the body by cytokeratin 18 measurement, Biomed. Pharmacother., 2005, vol. 59, no. 2, pp. 359−362. https://doi.org/10.1016/S0753-3322(05)80078-2

    Article  Google Scholar 

  52. Vaidya, M.M. and Kanojia, D., Keratins: Markers of cell differentiation or regulators of cell differentiation?, J. Biosci., 2007, vol. 32, pp. 629−634. https://doi.org/10.1007/s12038-007-0062-8

    Article  CAS  PubMed  Google Scholar 

  53. Wiche, G., Plectin-mediated intermediate filament functions: Why isoforms matter, Cells, 2021, vol. 10, no. 8, p. 2154. https://doi.org/10.3390/cells10082154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong, P. and Coulombe, P.A., Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair, J. Cell Biol., 2003, vol. 163, no. 2, pp. 327−337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, J., Gao, S., Xu, J., and Zhu, J., Prognostic value and clinicopathological significance of serum- and tissue-based cytokeratin 18 express level in breast cancer: a meta-analysis, Biosci. Rep., 2018, vol. 38, no. 2.

  56. Yoon, S. and Leube, R.E., Keratin intermediate filaments: intermediaries of epithelial cell migration, Essays Biochem., 2019, vol. 63, no. 5, pp. 521−533. https://doi.org/10.1042/EBC20190017

    Article  CAS  PubMed  Google Scholar 

  57. Zatloukal, K., Stumptner, C., Fuchsbichler, A., Fickert, P., Lackner, C., Trauner, M., and Denk, H., The keratin cytoskeleton in liver diseases, J. Pathol., 2004, vol. 204, no. 4, pp. 367−376. https://doi.org/10.1002/path.1649

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, L.J., Keratins in skin epidermal development and diseases, in Keratin, IntechOpen, 2018. https://doi.org/10.5772/intechopen.79050

    Book  Google Scholar 

  59. Zhang, B., Wang, J., Liu, W., Yin, Y., Qian, D., Zhang, H., and Wang, C., Cytokeratin 18 knockdown decreases cell migration and increases chemosensitivity in non-small cell lung cancer, J. Cancer Res. Clin. Oncol., 2016, vol. 142, pp. 2479−2487. https://doi.org/10.1007/s00432-016-2253-x

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, X., Yin, M., and Zhang, L.J., Keratin 6, 16 and 17 − critical barrier alarmin molecules in skin wounds and psoriasis, Cells, 2019, vol. 8, p. 807. https://doi.org/10.3390/cells8080807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Mykhaliuk, V. V. Havryliak or Y. T. Salyha.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mykhaliuk, V.V., Havryliak, V.V. & Salyha, Y.T. The Role of Cytokeratins in Ensuring the Basic Cellular Functions and in Dignosis of Disorders. Cytol. Genet. 56, 530–540 (2022). https://doi.org/10.3103/S0095452722060093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722060093

Navigation