Skip to main content
Log in

Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Senescence is a highly regulated process accompanied by changes in gene expression. While the mRNA levels of most genes decline, the mRNA levels of specific genes (senescence associated genes, SAGs) increase during senescence. Arabidopsis SAG12 (AtSAG12) gene codes for papain-like cysteine protease. The promoter of AtSAG12 is SA-responsive and reported to be useful to delay senescence by expressing cytokinin biosynthesis gene isopentenyltransferase specifically during senescence in several plants including Arabidopsis, lettuce and rice. The physiological role of AtSAG12 is not known; the homozygous atsag12 mutant neither fails to develop senescence-associated vacuoles nor shows any morphological phenotype. Through BLAST search using AtSAG12 amino acid sequences as query, we identified a few putative homologues from rice genome (OsSAGs; Oryza sativa SAGs). OsSAG12-1 is the closest homologue of AtSAG12 with 64% similar amino acid composition. Expression of OsSAG12-1 is induced during senescence and pathogen-induced cell death. To evaluate the possible role of OsSAG12-1 we generated RNAi transgenic lines in Japonica rice cultivar TP309. The transgenic lines developed early senescence at varying levels and showed enhanced cell death when inoculated with bacterial pathogen Xanthomonas oryzae pv.oryzae. Our results suggest that OsSAG12-1 is a negative regulator of cell death in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aparna G, Chatterjee A, Sonti RV and Sankaranarayanan R 2009 A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice. Plant Cell 21 1860–1873

    Article  PubMed  CAS  Google Scholar 

  • Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G and Humbeck K 2009 Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J. 58 333–346

    Article  PubMed  CAS  Google Scholar 

  • Biswas AK and Choudhuri MA 1980 Mechanism of monocarpic senescence in rice. Plant Physiol. 65 340–345

    Article  PubMed  CAS  Google Scholar 

  • Brusslan JA, Rus Alvarez-Canterbury AM, Nair NU, Rice JC, Hitchler MJ and Pellegrini M 2012 Genome-wide evaluation of histone methylation changes associated with leaf senescence in Arabidopsis. PLoS One 7 e33151

    Article  PubMed  CAS  Google Scholar 

  • Chen HJ, Huang DJ, Hou WC, Liu JS and Lin YH 2006 Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. J. Plant Physiol. 163 863–876

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Kilbienski I, Miao Y, Roitsch T, Zschiesche W, Humbeck K and Krupinska K 2010 Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness. Plant Mol. Biol. 73 379–390

    Article  PubMed  CAS  Google Scholar 

  • Lee RH, Wang CH, Huang LT and Chen SC 2001 Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J. Exp. Bot. 52 1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Kim HJ and Nam HG 2007 Leaf senescence. Annu. Rev. Plant Biol. 58 115–136

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Vantoai T, Moy LP, Bock G, Linford LD and Quackenbush J 2005 Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol. 137 1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Zhou Y, Szczerba MW, Li X and Lin Y 2010 Identification and application of a rice senescence-associated promoter. Plant Physiol. 153 1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Maguire TL, Collins GC and Sedgley M 1991 A modified CTAB DNA extraction procedure for plants belonging to the family proteaceae. Plant Mol. Biol. Rep. 12 106–109

    Article  Google Scholar 

  • McCabe MS, Garratt LC, Schepers F, Jordi WJ, Stoopen GM, Davelaar E, van Rhijn JH, Power JB and Davey MR 2001 Effects of P(SAG12)-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol. 127 505–516

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Arteca RN and Pell EJ 1999 Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol. 120 1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Nandi A, Welti R and Shah J 2004 The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16 465–477

    Article  PubMed  CAS  Google Scholar 

  • Nandi AK, Kushalappa K, Prasad K and Vijayraghavan U 2000 A conserved function for Arabidopsis SUPERMAN in regulating floral-whorl cell proliferation in rice, a monocotyledonous plant. Curr. Biol. 10 215–218

    Article  PubMed  CAS  Google Scholar 

  • Noh YS and Amasino RM 1999a Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol. Biol. 41 181–194

    Article  PubMed  CAS  Google Scholar 

  • Noh YS and Amasino RM 1999b Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Mol. Biol. 41 195–206

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Noh YS, Martinez DE, Vila Petroff MG, Staehelin LA, Amasino RM and Guiamet JJ 2005 Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J. 41 831–844

    Article  PubMed  CAS  Google Scholar 

  • Park CJ, Peng Y, Chen X, Dardick C, Ruan D, Bart R, Canlas PE and Ronald PC 2008 Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol. 6 e231

    Article  PubMed  Google Scholar 

  • Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, Lee SK, Jeong SW, et al. 2007 The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19 1649–1664

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J and Russel DW 2001 Molecular cloning: A laboratory manual 3rd edition (Cold Spring Harbor Laboratory press)

  • Subramoni S and Sonti RV 2005 Growth deficiency of a Xanthomonas oryzae pv. oryzae fur mutant in rice leaves is rescued by ascorbic acid supplementation. Mol. Plant Microbe Interact. 18 644–651

    Article  PubMed  CAS  Google Scholar 

  • Swain S, Roy S, Shah J, Van Wees S, Pieterse CM and Nandi AK 2011 Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Mol. Plant Pathol. 12 855–865

    Article  PubMed  CAS  Google Scholar 

  • Sykorova B, Kuresova G, Daskalova S, Trckova M, Hoyerova K, Raimanova I, Motyka V, Travnickova A, Elliott MC and Kaminek M 2008 Senescence-induced ectopic expression of the A tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx and nitrate reductase activity, but does not affect grain yield. J. Exp. Bot. 59 377–387

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Chen C, Xu Y, Jiang R, Han Y, Xu Z and Chong K 2004 A Practical Vector for Efficient Knockdown of Gene Expression in Rice (Oryza sativa L). Plant Mol. Biol. Report. 22 409–417

    Article  CAS  Google Scholar 

  • Yap MN, Lee RH, Huang YJ, Liao CJ and Chen SC 2003 Molecular characterization of a novel senescence-associated gene SPA15 induced during leaf senescence in sweet potato. Plant Mol. Biol. 51 471–481

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J and Gruissem W 2010 Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J. Integr. Plant Biol. 52 653–669

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Usha Vijayraghavan, Indian Institute of Sciences, Bangalore, India, for providing TP309 seeds and Kang Chong, Institute of Botany, Chinese Academy of Science, Beijing, for providing pTCK303 vector. This work was supported by the DST-purse, Capacity Build-up and UGC resource network funds to AKN, CSIR fellowship to SS and ICMR fellowship to MKG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Kumar Nandi.

Additional information

Corresponding editor: UTPAL NATH

MS received 18 March 2013; accepted 19 April 2013

Corresponding editor: Utpal Nath

[Singh S, Giri MK, Singh PK, Siddiqui A and Nandi AK 2013 Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J. Biosci. 38 1–10] DOI 10.1007/s12038-013-9334-7

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/sep2013/supp/Singh.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Giri, M.K., Singh, P.K. et al. Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci 38, 583–592 (2013). https://doi.org/10.1007/s12038-013-9334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9334-7

Keywords

Navigation