Skip to main content

Advertisement

Log in

Amelioration of Phytanic Acid–Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets supporting the findings of this study are included in the article.

Abbreviations

FAs:

Fatty acids

KBs:

Ketone bodies

BBB:

Blood-brain barrier

BCFAs:

Branched-chain fatty acids

LCFAs:

Long-chain fatty acids

PA:

Phytanic acid

ROS:

Reactive oxygen species

CNS:

Central nervous system

References

  1. Schönfeld P, Reiser G (2017) Inhibition of β-oxidation is not a valid therapeutic tool for reducing oxidative stress in conditions of neurodegeneration. J Cereb Blood Flow Metab 37. https://doi.org/10.1177/0271678X16642448

  2. Romano A, Koczwara JB, Gallelli CA et al (2017) Fats for thoughts: An update on brain fatty acid metabolism. Int J Biochem Cell Biol 84:40–45. https://doi.org/10.1016/j.biocel.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  3. Kim Ha J, Lindsay RC (1990) Method for the quantitative analysis of volatile free and total branched-chain fatty acids in cheese and milk fat. J Dairy Sci 73. https://doi.org/10.3168/jds.S0022-0302(90)78877-7

  4. Alonso L, Fontecha J, Lozada L et al (1999) Fatty acid composition of caprine milk: major, branched-chain, and trans fatty acids. J Dairy Sci 82. https://doi.org/10.3168/jds.S0022-0302(99)75306-3

  5. Unger AL, Bourne DE, Walsh H, Kraft J (2020) Fatty acid content of retail cow’s milk in the Northeastern United States-what’s in it for the consumer? J Agric Food Chem 68. https://doi.org/10.1021/acs.jafc.9b07390

  6. Ran-Ressler RR, Bae S, Lawrence P et al (2014) Branched-chain fatty acid content of foods and estimated intake in the USA. Br J Nutr 112. https://doi.org/10.1017/S0007114514001081

  7. Nicolaides N (1971) The structures of the branched fatty acids in the wax esters of vernix caseosa. Lipids 6. https://doi.org/10.1007/BF02531172

  8. Ran-Ressler R, Devapatla S, Lawrence P, Brenna JT (2008) Comparison of BCFA types in vernix and meconium of healthy neonates. FASEB J 22. https://doi.org/10.1096/fasebj.22.1_supplement.1091.1

  9. Egge H, Murawski U, Ryhage R et al (1972) Minor constituents of human milk IV: Analysis of the branched chain fatty acids. Chem Phys Lipids 8. https://doi.org/10.1016/0009-3084(72)90042-4

  10. Gibson RA, Kneebone GM (1981) Fatty acid composition of human colostrum and mature breast milk. Am J Clin Nutr 34. https://doi.org/10.1093/ajcn/34.2.252

  11. Su X, Magkos F, Zhou D et al (2015) Adipose tissue monomethyl branched-chain fatty acids and insulin sensitivity: effects of obesity and weight loss. Obesity 23. https://doi.org/10.1002/oby.20923

  12. Mika A, Stepnowski P, Kaska L et al (2016) A comprehensive study of serum odd- and branched-chain fatty acids in patients with excess weight. Obesity 24. https://doi.org/10.1002/oby.21560

  13. Kruska N, Reiser G (2011) Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40. Neurobiol Dis 43. https://doi.org/10.1016/j.nbd.2011.04.020

  14. Santiago B, MacGilvray M, Faustoferri RC, Quivey RG (2012) The branched-chain amino acid aminotransferase encoded by ilvE Is Involved in acid tolerance in Streptococcus mutans. J Bacteriol 194. https://doi.org/10.1128/JB.06737-11

  15. Wongtangtintharn S, Oku H, Iwasaki H, Toda T (2004) Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J Nutr Sci Vitaminol (Tokyo) 50. https://doi.org/10.3177/jnsv.50.137

  16. Hellgren LI (2010) Phytanic acid - An overlooked bioactive fatty acid in dairy fat? Annals of the New York Academy of Sciences 1190:42–49. https://doi.org/10.1111/j.1749-6632.2009.05254.x

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Yepuri NR, Holt SA, Moraes G et al (2014) Stereoselective synthesis of perdeuterated phytanic acid, its phospholipid derivatives and their formation into lipid model membranes for neutron reflectivity studies. Chem Phys Lipids 183. https://doi.org/10.1016/j.chemphyslip.2014.04.004

  18. Kataria Y, Wright M, Deaton RJ et al (2015) Dietary influences on tissue concentrations of phytanic acid and AMACR expression in the benign human prostate. Prostate 75. https://doi.org/10.1002/pros.22905

  19. Borges CG, Canani CR, Fernandes CG et al (2015) Reactive nitrogen species mediate oxidative stress and astrogliosis provoked by in vivo administration of phytanic acid in cerebellum of adolescent rats: a potential contributing pathomechanism of cerebellar injury in peroxisomal disorders. Neuroscience 304. https://doi.org/10.1016/j.neuroscience.2015.07.028

  20. Busanello ENB, Amaral AU, Tonin AM et al (2013) Disruption of mitochondrial homeostasis by phytanic acid in cerebellum of young rats. Cerebellum 12:362–369. https://doi.org/10.1007/s12311-012-0426-y

    Article  CAS  PubMed  Google Scholar 

  21. Leipnitz G, Amaral AU, Zanatta  et al (2010) Neurochemical evidence that phytanic acid induces oxidative damage and reduces the antioxidant defenses in cerebellum and cerebral cortex of rats. Life Sci 87. https://doi.org/10.1016/j.lfs.2010.06.015

  22. Rönicke S, Kruska N, Kahlert S, Reiser G (2009) The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiol Dis 36. https://doi.org/10.1016/j.nbd.2009.08.005

  23. Kahlert S, Schönfeld P, Reiser G (2005) The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes. Neurobiol Dis 18. https://doi.org/10.1016/j.nbd.2004.08.010

  24. Reiser G, Schönfeld P, Kahlert S (2006) Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment. Int J Dev Neurosci 24:113–112. https://doi.org/10.1016/j.ijdevneu.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  25. Das L, Bhaumik E, Raychaudhuri U, Chakraborty R (2012) Role of nutraceuticals in human health. J Food Sci Technol 49. https://doi.org/10.1007/s13197-011-0269-4

  26. Urrutia O, Mendizabal JA, Alfonso L et al (2020) Adipose tissue modification through feeding strategies and their implication on adipogenesis and adipose tissue metabolism in ruminants. Int J Mol Sci 21

  27. Jansen GA, Wanders RJA (2006) Alpha-oxidation. Biochim Biophys Acta Mol Cell Res 1763(12):1403–1412. https://doi.org/10.1016/j.bbamcr.2006.07.012

  28. Corazzin M, Romanzin A, Sepulcri A et al (2019) Fatty acid profiles of cow’s milk and cheese as affected by mountain pasture type and concentrate supplementation. Animals 9. https://doi.org/10.3390/ani9020068

  29. Leiber F, Kreuzer M, Nigg D et al (2005) A study on the causes for the elevated n-3 fatty acids in cows’ milk of alpine origin. Lipids 40. https://doi.org/10.1007/s11745-005-1375-3

  30. Schröder M, Lutz NL, Tangwan EC et al (2012) Phytanic acid concentrations and diastereomer ratios in milk fat during changes in the cow’s feed from concentrate to hay and back. Eur Food Res Technol 234. https://doi.org/10.1007/s00217-012-1710-2

  31. Vetter W, Schröder M (2011) Phytanic acid - a tetramethyl-branched fatty acid in food. Lipid Technol 23. https://doi.org/10.1002/lite.201100127

  32. Che BN, Kristensen T, Nebel C et al (2013) Content and distribution of phytanic acid diastereomers in organic milk as affected by feed composition. J Agric Food Chem 61. https://doi.org/10.1021/jf304079r

  33. Baars T, Schröder M, Kusche D, Vetter W (2012) Phytanic acid content and SRR/RRR diastereomer ratio in milk from organic and conventional farms at low and high level of fodder input. Org Agric 2. https://doi.org/10.1007/s13165-012-0021-z

  34. Vetter W, Schröder M (2010) Concentrations of phytanic acid and pristanic acid are higher in organic than in conventional dairy products from the German market. Food Chem 119. https://doi.org/10.1016/j.foodchem.2009.07.027

  35. Steinberg D, Avigan J, Mize C et al (1965) Conversion of U-C14-phytol to phytanic acid and its oxidation in heredopathia atactica polyneuritiformis. Biochem Biophys Res Commun 19. https://doi.org/10.1016/0006-291X(65)90328-1

  36. Wanders RJA, Komen J, Ferdinandusse S (2011) Phytanic acid metabolism in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 1811:498–507. https://doi.org/10.1016/j.bbalip.2011.06.006

  37. Wanders RJA, Jansen GA, Lloyd MD (2003) Phytanic acid alpha-oxidation, new insights into an old problem: a review. Biochim Biophys Acta Mol Cell Biol Lipids 1631:119–135. https://doi.org/10.1016/s1388-1981(03)00003-9

  38. Van Den Brink DM, Wanders RJA (2006) Phytanic acid: production from phytol, its breakdown and role in human disease. Cell Mol Life Sci 63:1752–1765. https://doi.org/10.1007/s00018-005-5463-y

    Article  CAS  PubMed  Google Scholar 

  39. Schönfeld P, Reiser G (2006) Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. J Biol Chem 281. https://doi.org/10.1074/jbc.M513198200

  40. Schönfeld P, Kahlert S, Reiser G (2004) In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition. Biochem J 383. https://doi.org/10.1042/BJ20040583

  41. Wierzbicki AS, Lloyd MD, Schofield CJ et al (2002) Refsum’s disease: a peroxisomal disorder affecting phytanic acid α-oxidation. J Neurochem 80:727–735. https://doi.org/10.1046/J.0022-3042.2002.00766.X

    Article  CAS  PubMed  Google Scholar 

  42. Schönfeld P, Wojtczak L (2007) Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta Bioenerg 1767. https://doi.org/10.1016/j.bbabio.2007.04.005

  43. Chiu H-F, Shen Y-C, Venkatakrishnan K, Wang C-K (2018) Popular functional foods and nutraceuticals with lipid lowering activity and in relation to cardiovascular disease, dyslipidemia, and related complications: an overview. J Food Bioact 2. https://doi.org/10.31665/jfb.2018.2137

  44. Dadhania V, Trivedi P, Vikram A, Nand Tripathi D (2016) Nutraceuticals against neurodegeneration: a mechanistic insight. Curr Neuropharmacol 14. https://doi.org/10.2174/1570159x14666160104142223

  45. Pandareesh MD, Kandikattu HK, Razack S et al (2018) Nutrition and nutraceuticals in neuroinflammatory and brain metabolic stress: implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 17. https://doi.org/10.2174/1871527317666180625104753

  46. Kemp S, Berger J, Aubourg P (2012) X-linked adrenoleukodystrophy: clinical, metabolic, genetic and pathophysiological aspects. Biochim Biophys Acta Mol Basis Dis 1822:1465–1474. https://doi.org/10.1016/J.BBADIS.2012.03.012

    Article  CAS  Google Scholar 

  47. Gutknecht J (1988) Proton conductance caused by long-chain fatty acids in phospholipid bilayer membranes. J Membr Biol 106. https://doi.org/10.1007/BF01871769

  48. Schönfeld P, Reiser G (2008) Comment concerning the article: “Phytanic acid impairs mitochondrial respiration through protonophoric action” by Komen et al.: Branched chain phytanic acid inhibits the activity of the mitochondrial respiratory chain. Cell Mol Life Sci 65:2266–2269. https://doi.org/10.1007/S00018-008-8117-Z/METRICS

    Article  PubMed  Google Scholar 

  49. Skulachev VP (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 294. https://doi.org/10.1016/0014-5793(91)80658-P

  50. Schönfeld P, Bohnensack R (1997) Fatty-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier. FEBS Lett 420. https://doi.org/10.1016/S0014-5793(97)01511-1

  51. Hall CN, Klein-Flügge MC, Howarth C, Attwell D (2012) Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 32. https://doi.org/10.1523/JNEUROSCI.0026-12.2012

  52. Chang KH, Chen CM (2020) The role of oxidative stress in Parkinson’s disease. Antioxidants 9:1–32. https://doi.org/10.3390/ANTIOX9070597

    Article  CAS  Google Scholar 

  53. Gejl M, Gjedde A, Egefjord L et al (2016) In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci 8. https://doi.org/10.3389/fnagi.2016.00108

  54. Obeso JA, Rodriguez-Oroz MC, Goetz CG et al (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661. https://doi.org/10.1038/NM.2165

    Article  CAS  PubMed  Google Scholar 

  55. Rodriguez-Oroz MC, Jahanshahi M, Krack P et al (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 8:1128–1139. https://doi.org/10.1016/S1474-4422(09)70293-5

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez M, Morales I, Rodriguez-Sabate C et al (2014) The degeneration and replacement of dopamine cells in Parkinson’s disease: The role of aging. Front Neuroanat 8. https://doi.org/10.3389/FNANA.2014.00080

  57. Masoud ST, Vecchio LM, Bergeron Y et al (2015) Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol Dis 74. https://doi.org/10.1016/j.nbd.2014.10.016

  58. Ryan BJ, Hoek S, Fon EA, Wade-Martins R (2015) Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci 40:200–210. https://doi.org/10.1016/J.TIBS.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  59. Mantzorou M, Pavlidou E, Vasios G et al (2018) Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother Res 32:957–975. https://doi.org/10.1002/PTR.6037

    Article  CAS  PubMed  Google Scholar 

  60. Perrone L, Squillaro T, Napolitano F et al (2019) The autophagy signaling pathway: a potential multifunctional therapeutic target of curcumin in neurological and neuromuscular diseases. Nutrients 11. https://doi.org/10.3390/NU11081881

  61. Tiwari SK, Agarwal S, Seth B et al (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8. https://doi.org/10.1021/nn405077y

  62. Behram Kandemir Y, Sarikcioglu L (2015) Melatonin and its therapeutic actions on peripheral nerve regeneration. Folia Morphologica (Poland) 74:283–289. https://doi.org/10.5603/FM.2015.0043

    Article  CAS  Google Scholar 

  63. Das Chagas Angelo Mendes Tenorio F, De Jesus Simões M, Teixeira VW, Teixeira ÁAC (2015) Effects of melatonin and prolactin in reproduction: review of literature. Rev Assoc Med Bras 61:269–274. https://doi.org/10.1590/1806-9282.61.03.269

    Article  Google Scholar 

  64. Barcelos GRM, Grotto D, Angeli JPF et al (2011) Evaluation of antigenotoxic effects of plant flavonoids quercetin and rutin on HepG2 cells. Phytotherapy Res 25. https://doi.org/10.1002/ptr.3436

  65. Gardi C, Bauerova K, Stringa B et al (2015) Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis. Arch Biochem Biophys 583. https://doi.org/10.1016/j.abb.2015.08.008

  66. Srinivasan K (2007) Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr 47:735–748. https://doi.org/10.1080/10408390601062054

    Article  CAS  PubMed  Google Scholar 

  67. Bukhari IA, Alhumayyd MS, Mahesar AL, Gilani AH (2013) The analgesic and anticonvulsant effects of piperine in mice. J Physiol Pharmacol 64. https://doi.org/10.1096/fasebj.27.1_supplement.660.5

  68. Venkatakrishnan K, Chiu HF, Wang CK (2019) Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism. J Funct Foods 57:425–438. https://doi.org/10.1016/J.JFF.2019.04.039

    Article  CAS  Google Scholar 

  69. Kondo K, Morino K, Nishio Y et al (2014) A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial. Metabolism 63. https://doi.org/10.1016/j.metabol.2014.04.005

  70. Belchior T, Paschoal VA, Magdalon J et al (2015) Omega-3 fatty acids protect from diet-induced obesity, glucose intolerance, and adipose tissue inflammation through PPARγ-dependent and PPARγ-independent actions. Mol Nutr Food Res 59. https://doi.org/10.1002/mnfr.201400914

  71. Saini RK, Keum YS (2018) Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review. Life Sci 203:255–267. https://doi.org/10.1016/J.LFS.2018.04.049

    Article  CAS  PubMed  Google Scholar 

  72. Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z (2019) The effect of resveratrol on neurodegenerative disorders: possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr Pharm Des 25. https://doi.org/10.2174/1381612825666190717110932

  73. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1. https://doi.org/10.1038/s41698-017-0038-6

  74. Shukla S, Dubey KK (2018) CoQ10 a super-vitamin: review on application and biosynthesis. 3 Biotech 8. https://doi.org/10.1007/S13205-018-1271-6

  75. Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J (2019) Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 59:2240–2257. https://doi.org/10.1080/10408398.2018.1442316

    Article  CAS  PubMed  Google Scholar 

  76. Spindler M, Flint Beal M, Henchcliffe C (2009) Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 5:597–610. https://doi.org/10.2147/NDT.S5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Limanaqi F, Biagioni F, Busceti CL et al (2019) Phytochemicals bridging autophagy induction and alpha-synuclein degradation in parkinsonism. Int J Mol Sci 20. https://doi.org/10.3390/IJMS20133274

  78. Teter B, Morihara T, Lim GP et al (2019) Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol Dis 127. https://doi.org/10.1016/j.nbd.2019.02.015

  79. Hatami M, Abdolahi M, Soveyd N et al (2018) Molecular mechanisms of curcumin in neuroinflammatory disorders: a mini review of current evidences. Endocr Metab Immune Disord Drug Targets 19. https://doi.org/10.2174/1871530319666181129103056

  80. Maes M, Kallaur AP, Lopes J et al (2016) Immune-inflammatory and oxidative and nitrosative stress (IO & NS) pathways in depression and multiple sclerosis (MS): shared IO & NS pathways but less hyper-acute neuro-inflammation explain the increased incidence of depression in MS. Neurol Psychiatry Brain Res 22. https://doi.org/10.1016/j.npbr.2015.12.039

  81. Chiu HF, Lin TY, Shen YC et al (2016) Improvement of green tea polyphenol with milk on skin with respect to antioxidation in healthy adults: a double-blind placebo-controlled randomized crossover clinical trial. Food Funct 7. https://doi.org/10.1039/c5fo01271f

  82. Yang Y, Jiang S, Dong Y et al (2015) Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 58. https://doi.org/10.1111/jpi.12193

  83. Tian H, Ding N, Guo M et al (2019) Analysis of learning and memory ability in an Alzheimer’s disease mouse model using the Morris water maze. J Vis Exp 2019. https://doi.org/10.3791/60055

  84. Yoritaka A, Kawajiri S, Yamamoto Y et al (2015) Randomized, double-blind, placebo-controlled pilot trial of reduced coenzyme Q10 for Parkinson’s disease. Parkinsonism Relat Disord 21. https://doi.org/10.1016/j.parkreldis.2015.05.022

  85. Coimbra M, Isacchi B, Van Bloois L et al (2011) Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm 416. https://doi.org/10.1016/j.ijpharm.2011.01.056

  86. Hui Y, Chengyong T, Cheng L et al (2018) Resveratrol attenuates the cytotoxicity induced by amyloid-β1–42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem Res 43. https://doi.org/10.1007/s11064-017-2421-7

  87. Quadros Gomes BA, Bastos Silva JP, Rodrigues Romeiro CF et al (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid Med Cell Longev 2018. https://doi.org/10.1155/2018/8152373

  88. Pasinetti GM, Wang J, Ho L et al (2014) Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta Mol Basis Dis 1852:1202–1208. https://doi.org/10.1016/J.BBADIS.2014.10.006

    Article  Google Scholar 

  89. Vidoni C, Secomandi E, Castiglioni A et al (2018) Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int 117. https://doi.org/10.1016/j.neuint.2017.05.013

  90. Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: More Pitfalls than Promises? Int J Mol Sci 12

  91. Vidoni C, Secomandi E, Castiglioni A et al (2018) Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int 117:174–187. https://doi.org/10.1016/j.neuint.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  92. Rezai-Zadeh K, Shytle D, Sun N et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25. https://doi.org/10.1523/JNEUROSCI.1521-05.2005

  93. Farkhondeh T, Yazdi HS, Samarghandian S (2018) The protective effects of green tea catechins in the management of neurodegenerative diseases: a review. Curr Drug Discov Technol 16. https://doi.org/10.2174/1570163815666180219115453

  94. Prasad K, Tiwari S (2016) Therapeutic interventions for advanced glycation-end products and its receptor-mediated cardiovascular disease. Curr Pharm Des 23. https://doi.org/10.2174/1381612822666161006143032

  95. Pervin M, Unno K, Ohishi T et al (2018) Beneficial effects of green tea catechins on neurodegenerative diseases. Molecules 23. https://doi.org/10.3390/molecules23061297

  96. Xing L, Zhang H, Qi R et al (2019) Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem 67:1029–1043. https://doi.org/10.1021/ACS.JAFC.8B06146

    Article  CAS  PubMed  Google Scholar 

  97. Chakraborty J, Nthenge-Ngumbau DN, Rajamma U, Mohanakumar KP (2014) Melatonin protects against behavioural dysfunctions and dendritic spine damage in 3-nitropropionic acid-induced rat model of Huntington’s disease. Behav Brain Res 264. https://doi.org/10.1016/j.bbr.2014.01.048

  98. Dong Y, Xu M, Kalueff AV, Song C (2018) Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration. Eur J Nutr 57. https://doi.org/10.1007/s00394-017-1462-7

  99. Eckert GP, Lipka U, Muller WE (2013) Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot Essent Fatty Acids 88. https://doi.org/10.1016/j.plefa.2012.05.006

  100. Hopperton KE, Trépanier MO, Giuliano V, Bazinet RP (2016) Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1–40 in mice. J Neuroinflammation 13. https://doi.org/10.1186/s12974-016-0721-5

  101. Avallone R, Vitale G, Bertolotti M (2019) Omega-3 fatty acids and neurodegenerative diseases: new evidence in clinical trials. Int J Mol Sci 20. https://doi.org/10.3390/IJMS20174256

  102. Angelova PR, Abramov AY (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 592:692–702. https://doi.org/10.1002/1873-3468.12964

    Article  CAS  PubMed  Google Scholar 

  103. Tuli HS, Kashyap D, Sharma AK, Sandhu SS (2015) Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci 135:147–157. https://doi.org/10.1016/J.LFS.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  104. Johnston JD, Skene DJ (2015) Regulation of mammalian neuroendocrine physiology and rhythms by melatonin. J Endocrinol 226:T187–T198. https://doi.org/10.1530/JOE-15-0119

    Article  CAS  PubMed  Google Scholar 

  105. Claustrat B, Leston J (2015) Melatonin: Physiological effects in humans. Neurochirurgie 61:77–84. https://doi.org/10.1016/J.NEUCHI.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  106. Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15. https://doi.org/10.2174/1568026615666150220120946

  107. Gurer-Orhan H, Suzen S (2015) Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr Med Chem 22. https://doi.org/10.2174/0929867321666141215095259

  108. Escribano B, Colin-Gonzalez A, Santamaria A, Tunez I (2014) The role of melatonin in multiple sclerosis, Huntington’s disease and cerebral ischemia. CNS Neurol Disord Drug Targets 13. https://doi.org/10.2174/1871527313666140806160400

  109. García JJ, Lõpez-Pingarrõn L, Almeida-Souza P et al (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: A review. J Pineal Res 56:225–237. https://doi.org/10.1111/JPI.12128

    Article  PubMed  Google Scholar 

  110. Domínguez-Alonso A, Valdés-Tovar M, Solís-Chagoyán H, Benítez-King G (2015) Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/calmodulin complex. Int J Mol Sci 16. https://doi.org/10.3390/ijms16011907

  111. Bassani TB, Gradowski RW, Zaminelli T et al (2014) Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson’s disease model in rats. Brain Res 1593. https://doi.org/10.1016/j.brainres.2014.09.068

  112. Polimeni G, Esposito E, Bevelacqua V et al (2014) Role of melatonin supplementation in neurodegenerative disorders. Front Biosci - Landmark 19:429–446. https://doi.org/10.2741/4217

    Article  CAS  Google Scholar 

  113. Kato H, Tanaka G, Masuda S et al (2015) Melatonin promotes adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes. J Pineal Res 59. https://doi.org/10.1111/jpi.12259

  114. Poliandri AHB, Esquifino AI, Cano P et al (2006) In vivo protective effect of melatonin on cadmium-induced changes in redox balance and gene expression in rat hypothalamus and anterior pituitary. J Pineal Res 41. https://doi.org/10.1111/j.1600-079X.2006.00360.x

  115. Suresh C, Dennis AO, Heinz J et al (2006) Melatonin protection against lead-induced changes in human neuroblastoma cell cultures. Int J Toxicol 25. https://doi.org/10.1080/10915810600959576

  116. Meng T, Yuan S, Zheng Z et al (2015) Effects of endogenous melatonin on glutamate and GABA rhythms in the striatum of unilateral 6-hydroxydopamine-lesioned rats. Neuroscience 286. https://doi.org/10.1016/j.neuroscience.2014.11.062

  117. Shi D, Xiao X, Wang J et al (2012) Melatonin suppresses proinflammatory mediators in lipopolysaccharide- stimulated CRL1999 cells via targeting MAPK, NF-κB, c/EBPβ, and p300 signaling. J Pineal Res 53. https://doi.org/10.1111/j.1600-079X.2012.00982.x

  118. Liu Y, Zhang L, Zhang H et al (2012) Exogenous melatonin modulates apoptosis in the mouse brain induced by high-LET carbon ion irradiation. J Pineal Res 52. https://doi.org/10.1111/j.1600-079X.2011.00917.x

  119. Reiter RJ, Tan DX, Maldonado MD (2005) Melatonin as an antioxidant: physiology versus pharmacology. J Pineal Res 39:215–216. https://doi.org/10.1111/J.1600-079X.2005.00261.X

    Article  CAS  PubMed  Google Scholar 

  120. Ghosh N, Chakraborty T, Mallick S et al (2015) Synthesis, characterization and study of antioxidant activity of quercetin-magnesium complex. Spectrochim Acta A Mol Biomol Spectrosc 151. https://doi.org/10.1016/j.saa.2015.07.050

  121. Abengózar-Vela A, Calonge M, Stern ME et al (2015) Quercetin and resveratrol decrease the inflammatory and oxidative responses in human ocular surface epithelial cells. Invest Ophthalmol Vis Sci 56. https://doi.org/10.1167/iovs.15-16595

  122. Frandsen JR, Narayanasamy P (2018) Neuroprotection through flavonoid: enhancement of the glyoxalase pathway. Redox Biol 14:465. https://doi.org/10.1016/J.REDOX.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  123. Gao Z, Huang K, Xu H (2001) Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacol Res 43. https://doi.org/10.1006/phrs.2000.0761

  124. Ho JH, Chang YL (2004) Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem 52. https://doi.org/10.1021/jf049243r

  125. Bournival J, Quessy P, Martinoli MG (2009) Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol 29. https://doi.org/10.1007/s10571-009-9411-5

  126. Gencer M, Karaca T, Güngör ANC et al (2014) The protective effect of quercetin on IMA levels and apoptosis in experimental ovarian ischemia-reperfusion injury. Eur J Obstet Gynecol Reprod Biol 177. https://doi.org/10.1016/j.ejogrb.2014.03.036

  127. Lee YS, Jun HS (2016) Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm 2016. https://doi.org/10.1155/2016/3094642

  128. Pavanato A, Tuñón MJ, Sánchez-Campos S et al (2003) Effects of quercetin on liver damage in rats with carbon tetrachloride-induced cirrhosis. Dig Dis Sci 48. https://doi.org/10.1023/A:1022869716643

  129. Pattanaik S, Hota D, Prabhakar S et al (2009) Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients. Phytotherapy Res 23. https://doi.org/10.1002/ptr.2676

  130. Shaikh J, Ankola DD, Beniwal V et al (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37. https://doi.org/10.1016/j.ejps.2009.02.019

  131. Volak LP, Ghirmai S, Cashman JR, Court MH (2008) Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos 36. https://doi.org/10.1124/dmd.108.020552

  132. Mittal R, Gupta RL (2000) In vitro antioxidant activity of piperine. Methods Find Exp Clin Pharmacol 22. https://doi.org/10.1358/mf.2000.22.5.796644

  133. Selvendiran K, Banu SM, Sakthisekaran D (2004) Protective effect of piperine on benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Clinica Chimica Acta 350. https://doi.org/10.1016/j.cccn.2004.07.004

  134. Xia Y, Khoi PN, Yoon HJ et al (2015) Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells. Mol Cell Biochem 398. https://doi.org/10.1007/s11010-014-2214-0

  135. Ying X, Yu K, Chen X et al (2013) Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells. Cell Immunol 285. https://doi.org/10.1016/j.cellimm.2013.09.001

  136. Bishnoi M, Chopra K, Rongzhu L, Kulkarni SK (2011) Protective effect of curcumin and its combination with piperine (bioavailability enhancer) against haloperidol-associated neurotoxicity: cellular and neurochemical evidence. Neurotox Res 20. https://doi.org/10.1007/s12640-010-9229-4

  137. Li S, Wang C, Wang M et al (2007) Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 80. https://doi.org/10.1016/j.lfs.2006.12.027

  138. Mao QQ, Huang Z, Zhong XM et al (2014) Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behav Brain Res 261. https://doi.org/10.1016/j.bbr.2013.12.020

  139. Vaibhav K, Shrivastava P, Javed H et al (2012) Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Mol Cell Biochem 367. https://doi.org/10.1007/s11010-012-1321-z

  140. Brown PJ, Mei G, Gibberd FB et al (1993) Diet and Refsum’s disease. The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with Refsum’s disease. J Hum Nutr Diet 6. https://doi.org/10.1111/j.1365-277X.1993.tb00375.x

  141. Wright ME, Bowen P, Virtamo J et al (2012) Estimated phytanic acid intake and prostate cancer risk: a prospective cohort study. Int J Cancer 131. https://doi.org/10.1002/ijc.27372

  142. Elmazar MM, El-Abhar HS, Schaalan MF, Farag NA (2013) Phytol/phytanic acid and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. Plos One 8. https://doi.org/10.1371/journal.pone.0045638

  143. Islam MT, De Alencar MVOB, Da Conceição Machado K et al (2015) Phytol in a pharma-medico-stance. Chem Biol Interact 240:60–73. https://doi.org/10.1016/J.CBI.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  144. Nakanishi T, Anraku M, Suzuki R et al (2016) Novel immunomodulatory effects of phytanic acid and its related substances in mice. J Funct Foods 21. https://doi.org/10.1016/j.jff.2015.12.028

  145. Wu J, Cohen P, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27:234–250. https://doi.org/10.1101/GAD.211649.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Support of DST FIST (No. SR/FST/LS-1/2017/05[C]) grant to the Department of Toxicology and DST PURSE grant (No. SR/PURSE Phase 2/39 [C]) to Jamia Hamdard is acknowledged. India Council of Medical Research (ICMR) Project grant (No.36/9/2020-TOXI-BMS) awarded to Prof. Suhel Parvez, is acknowledged. Ms. Neha received the Senior Research Fellowship from the DST-INSPIRE (File No. DST/INSPIRE/03/ 2019/001769. IVR No. 201900031405]. Dr. Shaista Chaudhary received a Senior Research Fellowship from ICMR (45/47/2013-PHA/BMS).

Author information

Authors and Affiliations

Authors

Contributions

N., S.C., and S.P. conceptualized the review. N. and S.C. wrote the first draft. P.T. contributed to providing the mechanistic insights. S.P. finalized the final manuscript. S.P. received the necessary grants for the study.

Corresponding author

Correspondence to Suhel Parvez.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have approved the final version of the manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neha, Chaudhary, S., Tiwari, P. et al. Amelioration of Phytanic Acid–Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03985-0

Keywords

Navigation