Skip to main content

Advertisement

Log in

Network Patterns of Beta-Amyloid Deposition in Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Beta-amyloid (Aβ) in the brain is a key pathological feature of certain neurodegenerative diseases. Recent studies using graph theory have shown that Aβ brain networks are of pathological significance in Alzheimer’s disease (AD). However, the characteristics of Aβ brain networks in Parkinson’s disease (PD) are unknown. In the present study using positron emission tomography (PET) with [11C]-Pittsburgh compound B (PiB), we applied a graph theory–based analysis to assess the topological properties of Aβ brain network in PD patients with and without Aβ burden (PiB-positive and PiB-negative, respectively) and healthy controls with Aβ burden. We found that the PD PiB-positive group demonstrated significantly lower value in global efficiency and modularity compared with PD PiB-negative group. The less robust modular structure indicates the tendency of having increased inter-modular connections than intra-modular connectivity (i.e., reduced segregation). Results of hub organization showed that relative to PD PiB-negative group, different hubs were identified in the PiB-positive group, which were located mainly within the default mode network. Overall, our findings suggest disturbances in Aβ topological organization characterized by abnormal network integration and segregation in PD patients with Aβ burden. The stronger inter-modular connectivity observed in the PD PiB-positive group may suggest the spreading pattern of Aβ between modules in those PD patients with elevated PiB burden, thus providing insight into the beta-amyloidopathy of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khoo TK, Yarnall AJ, Duncan GW, Coleman S, O’Brien JT, Brooks DJ, Barker RA, Burn DJ (2013) The spectrum of nonmotor symptoms in early Parkinson disease. Neurology 80(3):276–281

    Article  Google Scholar 

  2. Valli M, Mihaescu A, Strafella AP (2017) Imaging behavioural complications of Parkinson’s disease. Brain Imaging Behav. https://doi.org/10.1007/s11682-017-9764-1

    Article  Google Scholar 

  3. Mattila P, Rinne J, Helenius H, Dickson DW, Röyttä M (2000) Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson’s disease. Acta Neuropathol 100(3):285–290

    Article  CAS  Google Scholar 

  4. Petrou M, Bohnen NI, Müller ML, Koeppe RA, Albin RL, Frey KA (2012) Aβ-Amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology 79(11):1161–1167

    Article  CAS  Google Scholar 

  5. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319

    Article  CAS  Google Scholar 

  6. Mintun M, Larossa G, Sheline Y, Dence C, Lee SY, Mach R, Klunk W, Mathis C et al (2006) [11C] PIB in a nondemented population potential antecedent marker of Alzheimer disease. Neurology 67(3):446–452

    Article  CAS  Google Scholar 

  7. Petrou M, Dwamena BA, Foerster BR, MacEachern MP, Bohnen NI, Müller MLTM, Albin RL, Frey KA (2015) Amyloid deposition in Parkinson’s disease and cognitive impairment: a systematic review. Mov Disord 30(7):928–935. https://doi.org/10.1002/mds.26191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maetzler W, Reimold M, Liepelt I, Solbach C, Leyhe T, Schweitzer K, Eschweiler GW, Mittelbronn M et al (2008) [11C]PIB binding in Parkinson’s disease dementia. Neuroimage 39(3):1027–1033. https://doi.org/10.1016/j.neuroimage.2007.09.072

    Article  PubMed  Google Scholar 

  9. Edison P, Rowe CC, Rinne JO, Ng S, Ahmed I, Kemppainen N, Villemagne VL, O’Keefe G et al (2008) Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C] PIB positron emission tomography. J Neurol Neurosurg Psychiatry 79(12):1331–1338

    Article  CAS  Google Scholar 

  10. Gomperts SN, Locascio JJ, Rentz D, Santarlasci A, Marquie M, Johnson KA, Growdon JH (2013) Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. Neurology 80(1):85–91

    Article  Google Scholar 

  11. Akhtar RS, Xie SX, Chen YJ, Rick J, Gross RG, Nasrallah IM, Van Deerlin VM, Trojanowski JQ et al (2017) Regional brain amyloid-β accumulation associates with domain-specific cognitive performance in Parkinson disease without dementia. PLoS One 12(5):e0177924. https://doi.org/10.1371/journal.pone.0177924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Campbell MC, Markham J, Flores H, Hartlein JM, Goate AM, Cairns NJ, Videen TO, Perlmutter JS (2013) Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases. Neurology 81(6):520–527. https://doi.org/10.1212/WNL.0b013e31829e6f94

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  Google Scholar 

  14. Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125. https://doi.org/10.1111/j.1749-6632.2010.05888.x

    Article  PubMed  Google Scholar 

  15. Sepulcre J, Sabuncu MR, Becker A, Sperling R, Johnson KA (2013) In vivo characterization of the early states of the amyloid-beta network. Brain 136 (Pt 7:2239–2252. https://doi.org/10.1093/brain/awt146

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang J, Duan H, Huang Z, Yu Z, Alzheimer’s Disease Neuroimaging I (2015) Study of amyloid-beta peptide functional brain networks in AD, MCI and HC. Biomed Mater Eng 26(Suppl 1):S2197–S2205. https://doi.org/10.3233/BME-151525

    Article  CAS  PubMed  Google Scholar 

  17. Duan H, Jiang J, Xu J, Zhou H, Huang Z, Yu Z, Yan Z, Initiative ADN (2017) Differences in Aβ brain networks in Alzheimer’s disease and healthy controls. Brain Res 1655:77–89

    Article  CAS  Google Scholar 

  18. Pereira JB, Strandberg TO, Palmqvist S, Volpe G, van Westen D, Westman E, Hansson O, Initiative ADN (2017) Amyloid network topology characterizes the progression of Alzheimer’s disease during the predementia stages. Cereb Cortex 28(1):340–349

    Article  Google Scholar 

  19. Defer GL, Widner H, Marié RM, Rémy P, Levivier M (1999) Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord 14(4):572–584

    Article  CAS  Google Scholar 

  20. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653

    Article  Google Scholar 

  21. Beck AT, Steer RA, Brown GK (1996) Manual for the Beck depression inventory-II. San Antonio: TX: Psychological Corporation.

  22. Rusjan P, Mamo D, Ginovart N, Hussey D, Vitcu I, Yasuno F, Tetsuya S, Houle S et al (2006) An automated method for the extraction of regional data from PET images. Psychiatry Res Neuroimaging 147(1):79–89

    Article  Google Scholar 

  23. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging.

    Google Scholar 

  24. Logan J, Fowler JS, Volkow ND, Wang G-J, Ding Y-S, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16(5):834–840

    Article  CAS  Google Scholar 

  25. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, Cowie T, Dickinson K et al (2007) Imaging β-amyloid burden in aging and dementia. Neurology 68(20):1718–1725

    Article  CAS  Google Scholar 

  26. Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, Meltzer CC, Schimmel K et al (2005) Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 46(12):1959–1972

    CAS  PubMed  Google Scholar 

  27. Knezevic D, Verhoeff NPL, Hafizi S, Strafella AP, Graff-Guerrero A, Rajji T, Pollock BG, Houle S et al (2018) Imaging microglial activation and amyloid burden in amnestic mild cognitive impairment. J Cereb Blood Flow Metab 38(11):1885–1895. https://doi.org/10.1177/0271678X17741395

    Article  PubMed  Google Scholar 

  28. Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, Madison C, Ayakta N, Ghosh PM, La Joie R, Arthur-Bentil SK et al (2015) Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain 138(7):2020–2033. https://doi.org/10.1093/brain/awv112

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  Google Scholar 

  30. Hosseini SH, Hoeft F, Kesler SR (2012) GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PLoS One 7(7):e40709

    Article  CAS  Google Scholar 

  31. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419. https://doi.org/10.1093/cercor/bhl149

    Article  PubMed  Google Scholar 

  32. Seo EH, Lee DY, Lee J-M, Park J-S, Sohn BK, Lee DS, Choe YM, Woo JI (2013) Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLoS One 8(1):e53922

    Article  CAS  Google Scholar 

  33. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17. https://doi.org/10.1371/journal.pcbi.0030017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701

    Article  CAS  Google Scholar 

  35. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. Nature 393(6684):440–442

    Article  CAS  Google Scholar 

  36. Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3):036104

    Article  CAS  Google Scholar 

  37. Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Networks 1(3):215–239

    Article  Google Scholar 

  38. Wang T, Wang K, Qu H, Zhou J, Li Q, Deng Z, Du X, Lv F et al (2016) Disorganized cortical thickness covariance network in major depressive disorder implicated by aberrant hubs in large-scale networks. Sci Rep 6:27964

    Article  Google Scholar 

  39. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523. https://doi.org/10.1177/1073858406293182

    Article  PubMed  Google Scholar 

  40. Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc Ser B Methodol 53(3):539–572

    Google Scholar 

  41. Kotagal V, Bohnen NI, Müller ML, Frey KA, Albin RL (2017) Cerebral amyloid burden and Hoehn and Yahr stage 3 scoring in Parkinson disease. J Park Dis 7(1):143–147

    CAS  Google Scholar 

  42. Dyrba M, Mohammadi A, Grothe MJ, Kirste T, Teipel SJ (2018) Assessing inter-modal and inter-regional dependencies in prodromal Alzheimer’s disease using multimodal MRI/PET and Gaussian graphical models. arXiv preprint arXiv:180400049

  43. Yang J, Hu C, Guo N, Dutta J, Vaina LM, Johnson KA, Sepulcre J, Fakhri GE et al (2017) Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease. Sci Rep 7(1):13035. https://doi.org/10.1038/s41598-017-13339-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800

    Article  Google Scholar 

  45. Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS One 2(10):e1049

    Article  Google Scholar 

  46. Leyton CE, Cassidy B, Villemagne VL, Jones G, Kwok JB, Rowe CC, Ballard KJ, Piguet O et al (2016) Divergent network patterns of amyloid-β deposition in logopenic and amnestic Alzheimer’s disease presentations. Biol Psychiatry Cogn Neurosci Neuroimaging 1(1):24–31

    Article  Google Scholar 

  47. Culham JC, Cavina-Pratesi C, Singhal A (2006) The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia 44(13):2668–2684

    Article  Google Scholar 

  48. Garcia-Diaz AI, Segura B, Baggio HC, Marti MJ, Valldeoriola F, Compta Y, Bargallo N, Uribe C et al (2018) Structural brain correlations of visuospatial and visuoperceptual tests in Parkinson’s disease. J Int Neuropsychol Soc 24(1):33–44

    Article  Google Scholar 

Download references

Funding

This work was supported by the Canadian Institutes of Health Research (MOP-136778). Dr. Antonio Strafella is supported by the Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: JK and APS

Data acquisition: CG and LC

Data analysis: JK and CG

Data interpretation: JK and APS

Manuscript drafting: JK

Manuscript review and critique for important intellectual content: JK, CG, SSC, AM, LC, MV, SH, and APS

Approved version to be published: JK and APS

Corresponding author

Correspondence to Jinhee Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Ghadery, C., Cho, S.S. et al. Network Patterns of Beta-Amyloid Deposition in Parkinson’s Disease. Mol Neurobiol 56, 7731–7740 (2019). https://doi.org/10.1007/s12035-019-1625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1625-z

Keywords

Navigation