Skip to main content

Advertisement

Log in

Cytosolic Phospholipase A2 Facilitates Oligomeric Amyloid-β Peptide Association with Microglia via Regulation of Membrane-Cytoskeleton Connectivity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cytosolic phospholipase A2 (cPLA2) mediates oligomeric amyloid-β peptide (oAβ)-induced oxidative and inflammatory responses in glial cells. Increased activity of cPLA2 has been implicated in the neuropathology of Alzheimer’s disease (AD), suggesting that cPLA2 regulation of oAβ-induced microglial activation may play a role in the AD pathology. We demonstrate that LPS, IFNγ, and oAβ increased phosphorylated cPLA2 (p-cPLA2) in immortalized mouse microglia (BV2). Aβ association with primary rat microglia and BV2 cells, possibly via membrane-binding and/or intracellular deposition, presumably indicative of microglia-mediated clearance of the peptide, was reduced by inhibition of cPLA2. However, cPLA2 inhibition did not affect the depletion of this associated Aβ when cells were washed and incubated in a fresh medium after oAβ treatment. Since the depletion was abrogated by NH4Cl, a lysosomal inhibitor, these results suggested that cPLA2 was not involved in the degradation of the associated Aβ. To further dissect the effects of cPLA2 on microglia cell membranes, atomic force microscopy (AFM) was used to determine endocytic activity. The force for membrane tether formation (Fmtf) is a measure of membrane-cytoskeleton connectivity and represents a mechanical barrier to endocytic vesicle formation. Inhibition of cPLA2 increased Fmtf in both unstimulated BV2 cells and cells stimulated with LPS + IFNγ. Thus, increasing p-cPLA2 would decrease Fmtf, thereby increasing endocytosis. These results suggest a role of cPLA2 activation in facilitating oAβ endocytosis by microglial cells through regulation of the membrane-cytoskeleton connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee CY, Landreth GE (2010) The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna) 117(8):949–960. https://doi.org/10.1007/s00702-010-0433-4

    Article  CAS  Google Scholar 

  2. Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, Panetta J, Little S et al (1999) Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27(2):110–128

    Article  CAS  Google Scholar 

  3. Stephenson DT, Lemere CA, Selkoe DJ, Clemens JA (1996) Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol Dis 3(1):51–63. https://doi.org/10.1006/nbdi.1996.0005

    Article  CAS  PubMed  Google Scholar 

  4. Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20(3):269–287

    Article  CAS  Google Scholar 

  5. Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M (2017) Clearance of cerebral Abeta in Alzheimer’s disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci 74:2167–2201. https://doi.org/10.1007/s00018-017-2463-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, Farfara D, Kingery ND et al (2013) Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 4:2030. https://doi.org/10.1038/ncomms3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang CN, Shiao YJ, Shie FS, Guo BS, Chen PH, Cho CY, Chen YJ, Huang FL et al (2011) Mechanism mediating oligomeric Abeta clearance by naive primary microglia. Neurobiol Dis 42(3):221–230. https://doi.org/10.1016/j.nbd.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  8. Koenigsknecht J, Landreth G (2004) Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci 24(44):9838–9846. https://doi.org/10.1523/JNEUROSCI.2557-04.2004

    Article  CAS  PubMed  Google Scholar 

  9. Wilkinson K, El Khoury J (2012) Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer’s disease. Int J Alzheimers Dis 2012:489456–489410. https://doi.org/10.1155/2012/489456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu Y, Ye RD (2015) Microglial Abeta receptors in Alzheimer's disease. Cell Mol Neurobiol 35(1):71–83. https://doi.org/10.1007/s10571-014-0101-6

    Article  CAS  PubMed  Google Scholar 

  11. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127. https://doi.org/10.1056/NEJMoa1211851

    Article  CAS  PubMed  Google Scholar 

  12. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116. https://doi.org/10.1056/NEJMoa1211103

    Article  CAS  PubMed  Google Scholar 

  13. Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y, Cairns NJ, Kambal A, Loginicheva E, Gilfillan S, Cella M, Virgin HW, Unanue ER, Wang Y, Artyomov MN, Holtzman DM, Colonna M (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170 (4):649-663.e613. doi:https://doi.org/10.1016/j.cell.2017.07.023

    Article  Google Scholar 

  14. Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M (2016) TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91(2):328–340. https://doi.org/10.1016/j.neuron.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  15. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A {beta}-stimulated microglial activation. J Neurosci 29(38):11982–11992. https://doi.org/10.1523/JNEUROSCI.3158-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Udan ML, Ajit D, Crouse NR, Nichols MR (2008) Toll-like receptors 2 and 4 mediate Abeta(1-42) activation of the innate immune response in a human monocytic cell line. J Neurochem 104(2):524–533. https://doi.org/10.1111/j.1471-4159.2007.05001.x

    Article  CAS  PubMed  Google Scholar 

  17. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435. https://doi.org/10.1038/ng.803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441. https://doi.org/10.1038/ng.801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hicks JB, Lai Y, Sheng W, Yang X, Zhu D, Sun GY, Lee JC (2008) Amyloid-beta peptide induces temporal membrane biphasic changes in astrocytes through cytosolic phospholipase A2. Biochim Biophys Acta 1778(11):2512–2519. https://doi.org/10.1016/j.bbamem.2008.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106(1):45–55. https://doi.org/10.1111/j.1471-4159.2008.05347.x

    Article  CAS  PubMed  Google Scholar 

  21. Liu DX, Zhao WD, Fang WG, Chen YH (2012) cPLA2alpha-mediated actin rearrangements downstream of the Akt signaling is required for Cronobacter sakazakii invasion into brain endothelial cells. Biochem Biophys Res Commun 417(3):925–930. https://doi.org/10.1016/j.bbrc.2011.11.079

    Article  CAS  PubMed  Google Scholar 

  22. Moes M, Boonstra J, Regan-Klapisz E (2010) Novel role of cPLA(2) alpha in membrane and actin dynamics. Cell Mol Life Sci 67(9):1547–1557. https://doi.org/10.1007/s00018-010-0267-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2(5):392–396. https://doi.org/10.1038/35073095

    Article  CAS  PubMed  Google Scholar 

  24. Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277(35):32046–32053. https://doi.org/10.1074/jbc.M201750200

    Article  CAS  PubMed  Google Scholar 

  25. Ni M, Aschner M (2010) Neonatal rat primary microglia: Isolation, culturing, and selected applications. Curr Protoc Toxicol chapter 12:Unit 12 17. doi:https://doi.org/10.1002/0471140856.tx1217s43

  26. Chuang DY, Simonyi A, Kotzbauer PT, Gu Z, Sun GY (2015) Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. J Neuroinflammation 12:199. https://doi.org/10.1186/s12974-015-0419-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stine WB, Jungbauer L, Yu C, LaDu MJ (2011) Preparing synthetic Abeta in different aggregation states. Methods Mol Biol 670:13–32. https://doi.org/10.1007/978-1-60761-744-0_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    Article  CAS  Google Scholar 

  29. Stansley B, Post J, Hensley K (2012) A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflammation 9:115. https://doi.org/10.1186/1742-2094-9-115

    Article  PubMed  PubMed Central  Google Scholar 

  30. Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, Maxfield FR (2007) Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 18(4):1490–1496. https://doi.org/10.1091/mbc.E06-10-0975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Golde TE, Estus S, Younkin LH, Selkoe DJ, Younkin SG (1992) Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255(5045):728–730

    Article  CAS  Google Scholar 

  32. Seglen PO (1983) Inhibitors of lysosomal function. Methods Enzymol 96:737–764

    Article  CAS  Google Scholar 

  33. Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77(6):3363–3370. https://doi.org/10.1016/s0006-3495(99)77168-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doherty GJ, McMahon HT (2008) Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu Rev Biophys 37:65–95. https://doi.org/10.1146/annurev.biophys.37.032807.125912

    Article  CAS  PubMed  Google Scholar 

  35. Dai J, Sheetz MP, Wan X, Morris CE (1998) Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 18(17):6681–6692

    Article  CAS  Google Scholar 

  36. Raucher D (2008) Chapter 17: Application of laser tweezers to studies of membrane-cytoskeleton adhesion. Methods Cell Biol, vol 89:451–466. https://doi.org/10.1016/S0091-679X(08)00617-1

    Article  CAS  Google Scholar 

  37. Sun M, Graham JS, Hegedus B, Marga F, Zhang Y, Forgacs G, Grandbois M (2005) Multiple membrane tethers probed by atomic force microscopy. Biophys J 89(6):4320–4329. https://doi.org/10.1529/biophysj.104.058180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun M, Northup N, Marga F, Huber T, Byfield FJ, Levitan I, Forgacs G (2007) The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J Cell Sci 120(Pt 13):2223–2231. https://doi.org/10.1242/jcs.001370

    Article  CAS  PubMed  Google Scholar 

  39. Szaingurten-Solodkin I, Hadad N, Levy R (2009) Regulatory role of cytosolic phospholipase A2alpha in NADPH oxidase activity and in inducible nitric oxide synthase induction by aggregated Abeta1-42 in microglia. Glia 57(16):1727–1740. https://doi.org/10.1002/glia.20886

    Article  CAS  PubMed  Google Scholar 

  40. Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M et al (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28(16):4283–4292. https://doi.org/10.1523/jneurosci.4814-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39(5–6):333–340

    Article  CAS  Google Scholar 

  42. Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29(13):4252–4262. https://doi.org/10.1523/JNEUROSCI.5572-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wesen E, Jeffries GDM, Matson Dzebo M, Esbjorner EK (2017) Endocytic uptake of monomeric amyloid-beta peptides is clathrin-and dynamin-independent and results in selective accumulation of Abeta (1-42) compared to Abeta (1-40). Sci Rep 7(1):2021. https://doi.org/10.1038/s41598-017-02227-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Graham TR, Kozlov MM (2010) Interplay of proteins and lipids in generating membrane curvature. Curr Opin Cell Biol 22(4):430–436. https://doi.org/10.1016/j.ceb.2010.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sprong H, van der Sluijs P, van Meer G (2001) How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2(7):504–513. https://doi.org/10.1038/35080071

    Article  CAS  PubMed  Google Scholar 

  46. Bechler ME, de Figueiredo P, Brown WJ (2012) A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol 22(2):116–124. https://doi.org/10.1016/j.tcb.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  47. Ha KD, Clarke BA, Brown WJ (2012) Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta 1821(8):1078–1088. https://doi.org/10.1016/j.bbalip.2012.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Capestrano M, Mariggio S, Perinetti G, Egorova AV, Iacobacci S, Santoro M, Di Pentima A, Iurisci C et al (2014) Cytosolic phospholipase A2ε drives recycling through the clathrin-independent endocytic route. J Cell Sci 127(5):977–993. https://doi.org/10.1242/jcs.136598

    Article  CAS  PubMed  Google Scholar 

  49. Raucher D, Sheetz MP (1999) Membrane expansion increases endocytosis rate during mitosis. J Cell Biol 144(3):497–506

    Article  CAS  Google Scholar 

  50. El-Shimy IA, Heikal OA, Hamdi N (2015) Minocycline attenuates Abeta oligomers-induced pro-inflammatory phenotype in primary microglia while enhancing Abeta fibrils phagocytosis. Neurosci Lett 609:36–41. https://doi.org/10.1016/j.neulet.2015.10.024

    Article  CAS  PubMed  Google Scholar 

  51. Varnum MM, Kiyota T, Ingraham KL, Ikezu S, Ikezu T (2015) The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer’s disease. Neurobiol Aging 36(11):2995–3007. https://doi.org/10.1016/j.neurobiolaging.2015.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Medeiros R, Kitazawa M, Passos GF, Baglietto-Vargas D, Cheng D, Cribbs DH, LaFerla FM (2013) Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol 182(5):1780–1789. https://doi.org/10.1016/j.ajpath.2013.01.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shimizu E, Kawahara K, Kajizono M, Sawada M, Nakayama H (2008) IL-4-induced selective clearance of oligomeric beta-amyloid peptide (1-42) by rat primary type 2 microglia. J Immunol 181(9):6503–6513

    Article  CAS  Google Scholar 

  54. Martin-Moreno AM, Brera B, Spuch C, Carro E, Garcia-Garcia L, Delgado M, Pozo MA, Innamorato NG et al (2012) Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J Neuroinflammation 9:8. https://doi.org/10.1186/1742-2094-9-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knauer MF, Soreghan B, Burdick D, Kosmoski J, Glabe CG (1992) Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc Natl Acad Sci 89(16):7437–7441. https://doi.org/10.1073/pnas.89.16.7437

    Article  CAS  PubMed  Google Scholar 

  56. Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45(2):205–213. https://doi.org/10.1194/jlr.R300016-JLR200

    Article  CAS  PubMed  Google Scholar 

  57. Sun GY, He Y, Chuang DY, Lee JC, Gu Z, Simonyi A, Sun AY (2012) Integrating cytosolic phospholipase A2 with oxidative/nitrosative signaling pathways in neurons: a novel therapeutic strategy for AD. Mol Neurobiol 46(1):85–95. https://doi.org/10.1007/s12035-012-8261-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lukiw WJ, Bazan NG (2000) Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem Res 25(9–10):1173–1184

    Article  CAS  Google Scholar 

  59. Sanchez-Mejia RO, Newman JW, Toh S, Yu GQ, Zhou Y, Halabisky B, Cisse M, Scearce-Levie K et al (2008) Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nat Neurosci 11(11):1311–1318. https://doi.org/10.1038/nn.2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mury FB, da Silva WC, Barbosa NR, Mendes CT, Bonini JS, Sarkis JE, Cammarota M, Izquierdo I et al (2016) Lithium activates brain phospholipase A2 and improves memory in rats: Implications for Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 266(7):607–618. https://doi.org/10.1007/s00406-015-0665-2

    Article  PubMed  Google Scholar 

  61. Schaeffer EL, De-Paula VJ, da Silva ER, de ANB, Skaf HD, Forlenza OV, Gattaz WF (2011) Inhibition of phospholipase A2 in rat brain decreases the levels of total Tau protein. J Neural Transm (Vienna) 118(9):1273–1279. https://doi.org/10.1007/s00702-011-0619-4

    Article  CAS  Google Scholar 

  62. Schaeffer EL, Skaf HD, Novaes Bde A, da Silva ER, Martins BA, Joaquim HD, Gattaz WF (2011) Inhibition of phospholipase A2 in rat brain modifies different membrane fluidity parameters in opposite ways. Prog Neuro-Psychopharmacol Biol Psychiatry 35(7):1612–1617. https://doi.org/10.1016/j.pnpbp.2011.05.001

    Article  CAS  Google Scholar 

  63. Zhu D, Hu C, Sheng W, Tan KS, Haidekker MA, Sun AY, Sun GY, Lee JC (2009) NAD (P) H oxidase-mediated reactive oxygen species production alters astrocyte membrane molecular order via phospholipase A2. Biochem J 421(2):201–210. https://doi.org/10.1042/bj20090356

    Article  CAS  PubMed  Google Scholar 

  64. Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC (2006) Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci 26(43):11111–11119. https://doi.org/10.1523/jneurosci.3505-06.2006

    Article  CAS  PubMed  Google Scholar 

  65. Sagy-Bross C, Kasianov K, Solomonov Y, Braiman A, Friedman A, Hadad N, Levy R (2015) The role of cytosolic phospholipase A2 alpha in amyloid precursor protein induction by amyloid beta1-42: Implication for neurodegeneration. J Neurochem 132(5):559–571. https://doi.org/10.1111/jnc.13012

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work received financial support from the National Institute on Aging, Grant 5 R01 AG044404 (to J.C.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, T., Dong, L., Ridgley, D.M. et al. Cytosolic Phospholipase A2 Facilitates Oligomeric Amyloid-β Peptide Association with Microglia via Regulation of Membrane-Cytoskeleton Connectivity. Mol Neurobiol 56, 3222–3234 (2019). https://doi.org/10.1007/s12035-018-1304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1304-5

Keywords

Navigation