Skip to main content
Log in

Structure of ice confined in carbon and silica nanopores

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, water confined in silica and carbon nanopores has been examined. The purpose of this study is to describe the melting behaviour and structure of ice confined in silica nanopores, KIT-6 and ordered carbon nanopores, CMK-3, having pore diameters of 5.9 and 5.2 nm, respectively. To determine the melting temperature of ice inside the nanopores, we performed differential scanning calorimetry measurements of the systems studied. We found that the melting temperature of confined ice is reduced relative to the bulk melting point and this shift is 16 K for water confined in KIT-6 and 21 K for water confined in CMK-3. The structural properties of water at the interfaces were analysed by using the neutron diffraction method (ND). The ND measurements for all the systems studied, showed the features of both hexagonal ice, \(I_\mathrm{h}\), and cubic ice, \(I_\mathrm{c}\). However, we show that the ice confined in nanopores does not have a structure corresponding to the typical hexagonal form or the metastable cubic form. The ice confined in nanopores has a structure made up of cubic sequences interlaced with hexagonal sequences, which produce the stacking disordered ice (ice \(I_\mathrm{sd})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salzmann C G, Radaelli P G, Slater B and Finney J L 2011 Phys. Chem. Chem. Phys. 13 18468

    Article  CAS  Google Scholar 

  2. Loerting T, Winkel K, Seidl M, Bauer M, Mitterdorfer C, Handle P H et al 2011 Phys. Chem. Chem. Phys. 13 8783

    Article  CAS  Google Scholar 

  3. Palmer J C, Martelli F, Liu Y, Car R, Panagiotopoulos A Z and Debenedetti P G 2014 Nature 510 385

    Article  CAS  Google Scholar 

  4. Johari G P and Andersson O 2015 J. Chem. Phys. 143 054505

    Article  CAS  Google Scholar 

  5. Carr T H G, Shephard J J and Salzmann C G 2014 J. Phys. Chem. Lett. 5 2469

    Article  CAS  Google Scholar 

  6. König H 1943 Z. Kristallogr. 105 279

    Article  Google Scholar 

  7. Kuhs W F, Sippel C, Falenty A and Hansen T C 2012 Proc. Natl. Acad. Sci. 109 21259

    Article  CAS  Google Scholar 

  8. Dowell L G and Rinfret A P 1960 Nature 188 1144

    Article  CAS  Google Scholar 

  9. Mcmillan J A and Los S C 1965 Nature 206 806

    Article  CAS  Google Scholar 

  10. Kuhs W F, Bliss D V and Finney J L 1987 J. Phys. Colloq. 48 631

    Google Scholar 

  11. Bertie J E, Calvert L D and Whalley E 1963 J. Chem. Phys. 38 840

    Article  CAS  Google Scholar 

  12. Huang J and Bartell LS 1995 J. Chem. Phys. 99 3924

    Article  CAS  Google Scholar 

  13. Bartell L S and Lennon P L 2009 J. Chem. Phys. 130 084303

    Article  Google Scholar 

  14. Morishige K, Yasunaga H and Uematsu H 2009 J. Phys. Chem. C 113 3056

    Article  CAS  Google Scholar 

  15. Morishige K and Uematsu H 2005 J. Chem. Phys. 122 44711

    Article  Google Scholar 

  16. Steytler D C, Dore J C and Wright C J 1983 J. Phys. Chem. 87 2458

    Article  CAS  Google Scholar 

  17. Hansen T C, Koza M M and Kuhs W F 2008 J. Phys. Condens. Matter 20 285104

    Article  Google Scholar 

  18. Liu E, Dore J C, Webber J B W, Khushalani D, Jahnert S, Findenegg G H et al 2006 J. Phys. Condens. Matter 18 10009

    Article  CAS  Google Scholar 

  19. Dunn M, Dore J C and Chieux P 1988 J. Cryst. Growth 92 233

    Article  CAS  Google Scholar 

  20. Dore J, Webber B, Hartl M, Behrens P and Hansen T 2002 Physica A 314 501

    Article  CAS  Google Scholar 

  21. Baker J M, Dore J C and Behrens P 1997 J. Chem. Phys. 101 6226

    Article  CAS  Google Scholar 

  22. Handa Y P, Zakrzewski M and Fairbridge C 1992 J. Phys. Chem. 96 8594

    Article  CAS  Google Scholar 

  23. Dore J 2000 Chem. Phys. 258 327

    Article  CAS  Google Scholar 

  24. Takamuku T, Yamagami M, Wakita H, Masuda Y and Ya- maguchi T 1997 J. Phys. Chem. B 101 5730

  25. Seyed-Yazdi J, Farman H, Dore J C, Webber J B W and Findenegg G H 2008 J. Phys. Condens. Matter 20 205108

    Article  CAS  Google Scholar 

  26. Seyed-Yazdi J, Farman H, Dore J C, Webber J B W, Findenegg G H and Hansen T 2008 J. Phys. Condens. Matter 20 205107

    Article  CAS  Google Scholar 

  27. Moore E B, Llave E, Welke K, Scherlis D A and Molinero V 2010 Phys. Chem. Chem. Phys. 12 4124

    Article  CAS  Google Scholar 

  28. Fitzgerald R J 2013 Phys. Today 66 16

    Article  Google Scholar 

  29. Amaya A J, Pathak H, Modak V P, Laksmono H, Loh N D, Sellberg J A et al 2017 J. Phys. Chem. Lett. 8 3216

    Article  CAS  Google Scholar 

  30. Lupi L, Hudait A, Peters B, Grünwald M, Mullen R G, Nguyen A H et al 2017 Nature 551 218

    Article  CAS  Google Scholar 

  31. Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J and Whale T F 2015 Phys. Chem. Chem. Phys. 17 60

    Article  CAS  Google Scholar 

  32. Hansen T C, Koza M M, Lindner P and Kuhs W F 2008 J. Phys. Condens. Matter 20 285105

    Article  Google Scholar 

  33. Hansen T C, Sippel C and Kuhs W F 2015 Z. Kristallogr. 230 75

    CAS  Google Scholar 

  34. Hansen T C, Falenty A and Kuhs W F 2007 in Physics and chemistry of ice W F Kuhs (ed.) (Cambridge: Royal Society of Chemistry) p 201

  35. Kuhs W F, Genov G, Staykova D K and Hansen T 2004 Phys. Chem. Chem. Phys. 6 4917

    Article  CAS  Google Scholar 

  36. Kohl I, Mayer E and Hallbrucker A 2000 Phys. Chem. Chem. Phys. 2 1579

    Article  CAS  Google Scholar 

  37. Hudait A, Qiu S, Lupi L and Molinero V 2016 Phys. Chem. Chem. Phys. 18 9544

    Article  CAS  Google Scholar 

  38. Malkin T L, Murray B J, Brukhno A V, Anwar J and Salzmann C G 2012 Proc. Natl. Acad. Sci. 109 1041

    Article  CAS  Google Scholar 

  39. Moore E B and Molinero V 2011 Phys. Chem. Chem. Phys. 13 20008

    Article  CAS  Google Scholar 

  40. González Solveyra E, Llave E, Scherlis D A and Molinero V 2011 J. Phys. Chem. B 115 14196

    Article  Google Scholar 

  41. Johnston J C and Molinero V 2012 J. Am. Chem. Soc. 134 6650

    Article  CAS  Google Scholar 

  42. Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins K E, Radhakrishnan R et al 2006 J. Phys. Condens. Matter 18 R15

    Article  CAS  Google Scholar 

  43. Gelb L D, Gubbins K E, Radhakrishnan R and Sliwinska- Bartkowiak M 1999 Rep. Prog. Phys. 62 1573

    Article  CAS  Google Scholar 

  44. Radhakrishnan R, Gubbins K E and Sliwinska-Bartkowiak M 2002 J. Chem. Phys. 116 1147

    Article  CAS  Google Scholar 

  45. Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, Gras R, Radhakrishnan R and Gubbins K E 2001 J. Chem. Phys. 114 950

    Article  CAS  Google Scholar 

  46. Morishige K, Yasunaga H and Matsutani Y 2010 J. Phys. Chem. C 114 4028

    Article  CAS  Google Scholar 

  47. Sliwinska-Bartkowiak M, Jazdzewska M, Huang L L and Gubbins K E 2008 Phys. Chem. Chem. Phys. 10 4909

    Article  CAS  Google Scholar 

  48. Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z et al 2000 J. Am. Chem. Soc. 122 10712

    Article  CAS  Google Scholar 

  49. Kleitz F, Choi S H and Ryoo R 2003 Chem. Commun. 17 2136

    Article  Google Scholar 

  50. Domin K 2016 PhD thesis (A. Mickiewicz University)

  51. Balagurov A M, Beskrovnyy A I, Zhuravlev V V, Mironova G M, Bobrikov I A, Neov D et al 2016 J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 467

  52. Real-Time Neutron Diffractometer. Available: http://flnph.jinr.ru/en/facilities/ibr-2/instruments/dn-2

  53. Rietveld H M 1969 J. Appl. Cryst. 2 65

    Article  CAS  Google Scholar 

  54. Zlokazov V B and Chernyshev V V 1992 J. Appl. Cryst. 25 447

    Article  Google Scholar 

  55. Domin K, Chan K Y, Yung H, Gubbins K E, Jarek M, Sterc-zynska A et al 2016 J. Chem. Eng. Data 61 4252

    Article  CAS  Google Scholar 

  56. Suzuki Y, Duran H, Steinhart M, Kappl M, Butt H J and Floudas G 2015 Nano Lett. 15 1987

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Center of Science under grants DEC-2013/09/B/ST4/03711 and UMO-2016/22/A/ST4/00092 and from the grant of Research Group at JINR and Research Centers in Poland under grant number 04-4-1121-2015/2020 is gratefully acknowledged. This work was also partially supported by the International PhD Projects Programme of the Foundation for Polish Science operated within the Innovative Economy Operational Programme (IE OP) 2007–2013 within the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Śliwińska-Bartkowiak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jażdżewska, M., Śliwińska-Bartkowiak, M., Domin, K. et al. Structure of ice confined in carbon and silica nanopores. Bull Mater Sci 42, 184 (2019). https://doi.org/10.1007/s12034-019-1846-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1846-9

Keywords

Navigation