Skip to main content
Log in

Dynamics of supercooled confined water measured by deep inelastic neutron scattering

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter ~ 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid–liquid transition of supercooled confined water) on a “wet” sample with hydration h ~ 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually “dry” sample at h ~ 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid–liquid transition hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Debenedetti, Supercooled and glassy water, J. Phys.: Condens. Matter 15(45), R1669 (2003)

    ADS  Google Scholar 

  2. A. Nilsson and L. G. M. Pettersson, The structural origin of anomalous properties of liquid water, Nat. Commun. 6, 8998 (2015)

    Article  ADS  Google Scholar 

  3. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phase behaviour of metastable water, Nature 360 (6402), 324 (1992)

    Article  ADS  Google Scholar 

  4. L. Liu, S. H. Chen, A. Faraone, C. W. Yen, and C. Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802 (2005)

    Article  ADS  Google Scholar 

  5. S. H. Chen, F. Mallamace, C. Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, The violation of the Stokes–Einstein relation in supercooled water, Proc. Natl. Acad. Sci. USA 103(35), 12974 (2006)

    Article  ADS  Google Scholar 

  6. G. Schirò, M. Fomina, and A. Cupane, Communication: Protein dynamical transition vs. liquid–liquid phase transition in protein hydration water, J. Chem. Phys. 139(12), 121102 (2013)

    Article  ADS  Google Scholar 

  7. J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, Metastable liquid–liquid transition in a molecular model of water, Nature 510 (7505), 385 (2014)

    Article  ADS  Google Scholar 

  8. J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, D. Schlesinger, R. G. Sierra, D. Nordlund, C. Y. Hampton, D. Starodub, D. P. DePonte, M. Beye, C. Chen, A. V. Martin, A. Barty, K. T. Wikfeldt, T. M. Weiss, C. Caronna, J. Feldkamp, L. B. Skinner, M. M. Seibert, M. Messerschmidt, G. J. Williams, S. Boutet, L. G. M. Pettersson, M. J. Bogan, and A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature 510 (7505), 381 (2014)

    Article  ADS  Google Scholar 

  9. Z. Wang, K. Ito, J. B. Leão, L. Harriger, Y. Liu, and S. H. Chen, Liquid–liquid phase transition and its phase diagram in deeply-cooled heavy water confined in a nanoporous silica matrix, J. Phys. Chem. Lett. 6(11), 2009 (2015)

    Article  Google Scholar 

  10. S. H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, and E. Mamontov, Observation of fragile-to-strong dynamic crossover in protein hydration water, Proc. Natl. Acad. Sci. USA 103(24), 9012 (2006)

    Article  ADS  Google Scholar 

  11. M. Fomina, G. Schirò, and A. Cupane, Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy, Biophys. Chem. 185, 25 (2014)

    Article  Google Scholar 

  12. G. Schirò and A. Cupane, Anharmonic activations in proteins and peptide model systems and their connection with supercooled water thermodynamics, Il Nuovo Cimento C 39(3), 305 (2016)

    ADS  Google Scholar 

  13. D. T. Limmer and D. Chandler, The putative liquid–liquid transition is a liquid–solid transition in atomistic models of water, J. Chem. Phys. 135(13), 134503 (2011)

    Article  ADS  Google Scholar 

  14. A. K. Soper, Density profile of water confined in cylindrical pores in MCM-41 silica, J. Phys.: Condens. Matter 24(6), 064107 (2012)

    ADS  Google Scholar 

  15. C. Andreani, D. Colognesi, J. Mayers, G. F. Reiter, and R. Senesi, Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering, Adv. Phys. 54(5), 377 (2005)

    Article  ADS  Google Scholar 

  16. H. E. Stanley, P. Kumar, L. Xu, Z. Yan, M. G. Mazza, S. V. Buldyrev, S. H. Chen, and F. Mallamace, The puzzling unsolved mysteries of liquid water: Some recent progress, Physica A 386(2), 729 (2007)

    Article  ADS  Google Scholar 

  17. M. Cammarata, M. Levantino, A. Cupane, A. Longo, A. Martorana, and F. Bruni, Structure and dynamics of water confined in silica hydrogels: X-ray scattering and dielectric spectroscopy studies, Eur. Phys. J. E 12(Suppl. 1), S63 (2003)

    Article  Google Scholar 

  18. M. D’Amico, G. Schirò, A. Cupane, L. D’Alfonso, M. Leone, V. Militello, and V. Vetri, High fluorescence of thioflavin T confined in mesoporous silica xerogels, Langmuir 29(32), 10238 (2013)

    Article  Google Scholar 

  19. J. Mayers, Calculation of background effects on the VESUVIO eV neutron spectrometer, Meas. Sci. Technol. 22(1), 015903 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Mayers, A. L. Fielding, and R. Senesi, Multiple scattering in deep inelastic neutron scattering: Monte Carlo simulations and experiments at the ISIS eVS inverse geometry spectrometer, Nucl. Instrum. Methods Phys. Res. A 481(1–3), 454 (2002)

    Article  ADS  Google Scholar 

  21. J. Mayers, User Guide to VESUVIO Data Analysis: Programs for Powders and Liquids, ISIS Facility, 2010

    Google Scholar 

  22. G. B. West, Electron scattering from atoms, nuclei and nucleons, Phys. Rep. 18(5), 263 (1975)

    Article  ADS  Google Scholar 

  23. G. I. Watson, Neutron Compton scattering, J. Phys.: Condens. Matter 8(33), 5955 (1996)

    ADS  Google Scholar 

  24. M. Krzystyniak, A. G. Seel, S. E. Richards, M. J. Gutmann, and F. Fernandez-Alonso, Mass-selective neutron spectroscopy beyond the proton, J. Phys. Conf. Ser. 571, 012002 (2014)

    Article  Google Scholar 

  25. C. Pantalei, R. Senesi, C. Andreani, P. Sozzani, A. Comotti, S. Bracco, M. Beretta, P. E. Sokol, and G. Reiter, Interaction of single water molecules with silanols in mesoporous silica, Phys. Chem. Chem. Phys. 13(13), 6022 (2011)

    Article  Google Scholar 

  26. V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, Proton quantum coherence observed in water confined in silica nanopores, J. Chem. Phys. 127(15), 154501 (2007)

    Article  ADS  Google Scholar 

  27. Y. Finkelstein and R. Moreh, Temperature dependence of the proton kinetic energy in water between 5 and 673 K, Chem. Phys. 431–432, 58 (2014)

  28. G. Romanelli, F. Fernandez-Alonso, and C. Andreani, The harmonic picture of nuclear mean kinetic energies in heavy water, J. Phys. Conf. Ser. 571, 012003 (2014)

    Article  Google Scholar 

  29. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C. Y. Mou, and S. H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proc. Natl. Acad. Sci. USA 104(2), 424 (2007)

    Article  ADS  Google Scholar 

  30. F. Mallamace, S. H. Chen, M. Broccio, C. Corsaro, V. Crupi, D. Majolino, V. Venuti, P. Baglioni, E. Fratini, C. Vannucci, and H. E. Stanley, Role of the solvent in the dynamical transitions of proteins: The case of the lysozyme-water system., J. Chem. Phys. 127(4), 045104 (2007)

    Article  ADS  Google Scholar 

  31. A. Cupane, M. Fomina, and G. Schirò, The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid–liquid crossover, J. Chem. Phys. 141, 18C510 (2014)

    Article  Google Scholar 

  32. Z. Wang, K. H. Liu, P. Le, M. Li, W. S. Chiang, J. B. Leão, J. R. D. Copley, M. Tyagi, A. Podlesnyak, A. I. Kolesnikov, C. Y. Mou, and S. H. Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802 (2014)

    Article  ADS  Google Scholar 

  33. Z. Wang, A. I. Kolesnikov, K. Ito, A. Podlesnyak, and S. H. Chen, Pressure effect on the boson peak in deeply cooled confined water: Evidence of a liquid–liquid transition, Phys. Rev. Lett. 115(23), 235701 (2015)

    Article  ADS  Google Scholar 

  34. A. Cupane, V. De Michele, and G. Romanelli, ISIS experiment 1710456, 2017

Download references

Acknowledgements

V. D. M. and A. C. thank the members of the Molecular Biophysics and Nanotechnology group at the University of Palermo, Italy, for useful discussions and their indirect financial support. Financial support from Italian CNR (Dipartimento di Scienze Fisiche e Tecnologie della Materia) is also gratefully acknowledged; in fact, this work was supported under the CNR-STFC Agreement (2014–2020) concerning collaboration in scientific research at the ISIS pulsed neutron and muon source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cupane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Michele, V., Romanelli, G. & Cupane, A. Dynamics of supercooled confined water measured by deep inelastic neutron scattering. Front. Phys. 13, 138205 (2018). https://doi.org/10.1007/s11467-017-0699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0699-1

Keywords

Navigation