Skip to main content
Log in

Synthetic Promoters: Designing the cis Regulatory Modules for Controlled Gene Expression

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Designing the expression cassettes with desired properties remains the most important consideration of gene engineering technology. One of the challenges for predictive gene expression is the modeling of synthetic gene switches to regulate one or more target genes which would directly respond to specific chemical, environmental, and physiological stimuli. Assessment of natural promoter, high-throughput sequencing, and modern biotech inventory aided in deciphering the structure of cis elements and molding the native cis elements into desired synthetic promoter. Synthetic promoters which are molded by rearrangement of cis motifs can greatly benefit plant biotechnology applications. This review gives a glimpse of the manual in vivo gene regulation through synthetic promoters. It summarizes the integrative design strategy of synthetic promoters and enumerates five approaches for constructing synthetic promoters. Insights into the pattern of cis regulatory elements in the pursuit of desirable “gene switches” to date has also been reevaluated. Joint strategies of bioinformatics modeling and randomized biochemical synthesis are addressed in an effort to construct synthetic promoters for intricate gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

GUS:

β-Glucuronidase

TF:

Transcription factor

ABA:

Abscisic acid

DBD:

DNA binding domain

UAR:

Upstream activating region

PBZ:

Probenazole

LRE:

Light responsive elements

TSS:

Transcription start site

PG:

Poly galacturonase

References

  1. Zhou, J., Yang, Y., Wang, X., Yu, F., Yu, C., Chen, J., Chen, J., Cheng, Y., & Yan, C. (2013). Enhanced transgene expression in rice following selection controlled by weak promoters. BMC Biotechnology, 13, 29. https://doi.org/10.1186/1472-6750-13-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Potenza, C., Aleman, L., & Gopalan, C. S. (2004). Targeting transgene expression in research, agricultural and environmental applications: promoters used in plant transformation. In Vitro Cellular and Developmental Biology Plant, 40, 1–22. https://doi.org/10.1079/IVP2003477.

    Article  CAS  Google Scholar 

  3. Mogno, I., Vallania, F., Mitra, R. D., & Cohen, B. A. (2010). TATA is a modular component of synthetic promoters. Genome Research, 20, 1391–1397. https://doi.org/10.1101/gr.106732.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhullar, S., Chakravarthy, S., Advani, S., Datta, S., Pental, D., & Burma, P. K. (2003). Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis elements in a novel DNA context versus domain swapping. Plant Physiology, 132, 988–998. https://doi.org/10.1104/pp.103.020602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moshelion, M., & Altman, A. (2015). Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotechnology, 33 (6), 337–342. https://doi.org/10.1016/j.tibtech.2015.03.001.

    Article  CAS  Google Scholar 

  6. Mehrotra, R., Gupta, G., & Sethi, R. (2011). Designer promoter: an artwork of cis engineering. Plant Molecular Biology, l75, 527–536. https://doi.org/10.1007/s11103-011-9755-3.

    Article  CAS  Google Scholar 

  7. Venter, M. (2007). Synthetic promoters: genetic control through cis engineering. Trends Plant Science, 12, 118–124. https://doi.org/10.1016/j.tplants.2007.01.002.

    Article  CAS  Google Scholar 

  8. Hammer, K., Mijakovic, I., & Jensen, P. R. (2006). Synthetic promoter libraries-tuning of gene expression. Trends Biotechnology, 24, 53–55. https://doi.org/10.1016/j.tibtech.2005.12.003.

    Article  CAS  Google Scholar 

  9. Gurr, S. J., & Rushton, P. J. (2005). Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnology, 23, 283–290.

    Article  CAS  Google Scholar 

  10. Komarnytsky, S., & Borisjuk, N. (2003). Functional analysis of promoter elements in plants. Genetic Engineering, 25, 113–141.

    CAS  PubMed  Google Scholar 

  11. Porto, M. S., Pinheiro, M. P. N., Batista, V. G. L., dos Santos, R. C., Filho, P.D.A.M., & De Lima, L. M. (2014). Plant promoters: an approach of structure and function. Mol Biotechnology, 56, 38–49. https://doi.org/10.1007/s12033-013-9713-1.

    Article  CAS  Google Scholar 

  12. Kumari, S., & Ware, D. (2013). Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS ONE, 8(10), e79011. https://doi.org/10.1371/journal.pone.0079011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar, S., AlAbed, D., Whitteck, J. T., & Chen, W., et al. (2015). A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn. Plant Molecular Biology, 87, 341–353. https://doi.org/10.1007/s11103-015-0281-6.

    Article  CAS  PubMed  Google Scholar 

  14. Logemann, E., Birkenbihl, R. P., Rawat, V., Schneeberger, K., Schmelzer, E. & Somssich, I.E. (2013). Functional dissection of the PROPEP2 and PROPEP3 promoters reveals the importance of WRKY factors in mediating microbe-associated molecular pattern-induced expression. New Phytology, 198, 1165–1177. https://doi.org/10.1111/nph.12233.

    Article  CAS  Google Scholar 

  15. Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis acting regulatory DNA elements (PLACE) database. Nucleic Acids Research, 27, 297–300. https://doi.org/10.1093/nar/27.1.297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matys, V., Fricke, E., Geffers, R., Gössling, E., Haubrock, M., & Hehl, R. (2003). TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Research, 31, 374–378. https://doi.org/10.1093/nar/gkg1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lescot, M., Déhais, P., Moreau, Y., De Moor, B., Rouzé, P., & Rombauts, S. (2002). PlantCARE: a database of plant cis acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327. https://doi.org/10.1186/1471-2164-9-561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biłas, R., Szafran, K., Hnatuszko-Konka, K., & Kononowicz, A.K. (2016). Plant Cell Tissue and Organ Culture, 127, 269–287. https://doi.org/10.1007/s11240-016-1057-7.

    Article  CAS  Google Scholar 

  19. Mehrotra, R., & Mehrotra, S. (2010). Promoter activation by ACGT in response to salicylic and abscisic acids is differentially regulated by the spacing between two copies of the motif. J Plant Physiology, 167, 1214–1218.

    Article  CAS  Google Scholar 

  20. Acharya, S., Ranjan, R., Pattanaik, S., Maiti, I.B., Dey, N. (2014). Efficient chimeric plant promoters derived from plant infecting viral promoter sequences. Planta, 239, 381–396. https://doi.org/10.1007/s00425-013-1973-2.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, D., Patro, S., Ghosh, J., Das, A., Maiti, I.B., & Dey, N. (2012). Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root and leaf-activity using TGACG motif rearrangement. Gene, 503, 36–47. https://doi.org/10.1016/j.gene.2012.04.053.

    Article  CAS  PubMed  Google Scholar 

  22. Munteanu, B., Braun, M., & Boonrod, K. (2012). Improvement of PCR reaction conditions for site-directed mutagenesis of big plasmids. Journal of Zhejiang University Science. B, 13(4), 244–247. https://doi.org/10.1631/jzus.B1100180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cormack, B. (1994). Introduction of a point mutation by sequential PCR steps. Current Protocol Molecular Biology, 2, 857–859.

    Google Scholar 

  24. Ranjan, R., & Dey, N. (2012). Development of vascular tissue and stress inducible hybrid-synthetic promoters through dof-1 motifs rearrangement. Cell Biochemistry and Biophysics, 63, 235–245. https://doi.org/10.1007/s12013-012-9359-9.

    Article  CAS  PubMed  Google Scholar 

  25. Kuluev, B., Knyazev, A., Lebedev, Y., Iljassowa, A., Chemeris, A., & Russian (2010). Construction of hybrid promoters of caulimo viruses and analysis of their activity in transgenic plants. Journal of Plant Physiology, 57, 4582.

    Google Scholar 

  26. Kagami, O., Kikuch, M., Harayama, S., (2004). Single-stranded DNA family shuffling. Methods in Enzymology, 388, 11–21.

    Article  CAS  PubMed  Google Scholar 

  27. Cirino, P.C., Mayer, K.M., & Umeno, D. (2003). Generating mutant libraries using error-prone PCR. In: F. H. Arnold & G. Georgiou (Eds.) Directed evolution library creation. Methods in molecular biology™, 231. New York: Humana Press.

    Google Scholar 

  28. Guerva-Garcia, A., Lo´pez-Bucio, J., & Herrera-Estrella., L. (1999). The mannopine synthase promoter contains vectorial cis regulatory elements that act as enhancers and silencers. Molecular and General Genetics, 262, 608–617.

    Article  Google Scholar 

  29. Kourmpetli, S., Lee, K., Hemsley, R., Rossignol, P., Papageorgiou, T., & Drea, S. (2013). Bidirectional promoters in seed development and related hormone/stress responses. BMC Plant Biology, 13, 187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhullar, S., Datta, S., Advani, S., Chakravarthy, S., Gautam, T., Pental, D., & Burma, P.K. (2007). Functional analysis of cauliflower mosaic virus 35S promoter: re-evaluation of the role of subdomains B5, B4 and B2 in promoter activity. Plant Biotechnology Journal, 5, 696–708. https://doi.org/10.1111/j.1467-7652.2007.00274.x.

    Article  CAS  PubMed  Google Scholar 

  31. Hahn, S., & Young, E. T. (2011). Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics, 189(3), 705–736. https://doi.org/10.1534/genetics.111.127019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gustin, K., & Burk, R. D. (2000). PCR-directed linker scanning mutagenesis. In: M. J. Tymms (eds) Transcription factor protocols. Methods in molecular biology™, 130, 85–90.

  33. Liu, W., Mazarei, M., Rudis, M.R., Fethe, M.H., & Stewart, C.N. (2011) Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnol, pp. 11–108.

  34. Gertz, J., Siggia, E.D., & Cohen, B.A. (2009). Analysis of combinatorial cis regulation in synthetic and genomic promoters. Nature, 457, 215–218. https://doi.org/10.1038/nature07521.

    Article  CAS  PubMed  Google Scholar 

  35. Silva, J.M., Li, M.Z., Chang, K., Ge, W., Goldin, M.C., & Rickles, R.J. (2005). Second-generation shRNA libraries covering the 447 mouse and human genomes. Nature Genetics, 37, 1281–1288. https://doi.org/10.1038/ng1650.

    Article  CAS  PubMed  Google Scholar 

  36. Mukherjee, S., Berger, M.F., Jona, G., Wang, X.S., Muzzey, D., Snyder, M., Young, R.A., & Bulyk, M. L. (2004). Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nature Genetics, 36, 1331–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hernandez-Garcia, C.M., & Finer, J.J. (2014). Identification and validation of promoters and cis acting regulatory elements. Plant Science. https://doi.org/10.1016/j.plantsci.2013.12.007.

    Article  PubMed  Google Scholar 

  38. Rombauts, S., Florquin, K., Lescot, M., Marchal, K., Rouzé, P., & Van de Peer, Y. (2003). Computational approaches to identify promoters and cis regulatory elements in plant genomes. Plant Physiology, 132(3), 1162–1176. https://doi.org/10.1104/pp.102.017715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, L., Li, Q., Cheng, H., Zhang, M., Li, N., H (2014). 5′-cap selection methods and their application in full-length cD. Journal of Shanghai Jiaotong University, 19(5), 580–586.

    Article  Google Scholar 

  40. Venter, M., & Botha, F. C. (2010). Synthetic promoter engineering. In: E.C. Pua & M.R. Davey (Eds.), Plant developmental biology–biotechnological perspectives (pp. 393–414). Berlin: Springer.

    Chapter  Google Scholar 

  41. Pilpel, Y., Sudarsanam, P., & Church, G. M. (2001). Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, 29, 153–159.

    Article  CAS  PubMed  Google Scholar 

  42. Van Helden, J. (2003). Regulatory sequence analysis tools. Nucleic Acids Research, 31, 3593–3596. https://doi.org/10.1093/nar/gkv362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasan, R., & Uddin, J. (2014). Mining techniques for informative motif discovery. International Journal of Computer Applications, 88(12), 21–24.

    Article  Google Scholar 

  44. Bailey, L.T., Bodén, M., Whitington, T., & Machanick, P. (2010). The value of position-specific priors in motif discovery using MEME. BMC Bioinformatics, 11, 179. https://doi.org/10.1186/1471-2105.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dey, N., Sarkar, S., Acharya, S., & Maiti, I.B. (2015). Synthetic promoters in planta. Planta, 242, 1077.

    Article  CAS  PubMed  Google Scholar 

  46. Jegga, A., Gupta, G.A., Gowrisankar, S., Deshmukh, M.A., Connolly, S., & Finley, K., et al. (2005). CisMols analyzer: identification of compositionally similar cis element clusters in ortholog conserved regions of coordinately expressed genes. Nucleic Acids Research, 33, 408–411.

    Article  CAS  Google Scholar 

  47. Sharov, A.A., Dudekula, D.B., & Ko, M.S.H. (2006). CisView: a browser and database of cis regulatory modules predicted in the mouse genome. DNA Research, 13(3), 123–134. https://doi.org/10.1093/dnares/dsl005.

    Article  CAS  PubMed  Google Scholar 

  48. Karanam, S., & Moreno, C.S. (2004). CONFAC: automated application of comparative genomic promoter analysis to DNA microarray datasets. Nucleic Acids Research, 32, 475–484. https://doi.org/10.1093/nar/gkh353.

    Article  CAS  Google Scholar 

  49. Zhang, M. Q. (1998). A discrimination study of human core-promoters’ in Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 3, 240–251.

    Google Scholar 

  50. Zhang, M. Q. (1998). Statistical features of human exons and their flanking regions. Human Molecular Genetics, 7, 919–932. https://doi.org/10.1093/hmg/7.5.919.

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki, Y., Yamashita, R., Nakai, K., & Sugano, S. (2002). DBTSS: DataBase of human transcriptional start sites and full-length cDNAs. Nucleic Acids Research, 30(1), 328–331. https://doi.org/10.1093/nar/30.1.328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jagannathan, V., Roulet, E., Delorenzi, M., & Bucher, P. (2006). HTPSELEX-a database of high-throughput SELEX libraries for TFBSs. Nucleic Acids Research, 34, 90–94. https://doi.org/10.1093/nar/gkj049.

    Article  CAS  Google Scholar 

  53. Sandelin, A., Alkema, W., Engström, P., Wasserman, W.W., & Lenhard, B. (2004). JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Research, 32, 91–94.

    Article  Google Scholar 

  54. Ohler, U., Harbeck, S., & Niemann, H. (1999). Interpolated Markov chains for eukaryotic promoter recognition. Bioinformatics, 15, 362–369.

    Article  CAS  PubMed  Google Scholar 

  55. Pesole, G., Liuni, S., Grillo, G., Licciulli, F., Mignone, F., Gissi, C., & Saccone, C. (2002). UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3 untranslated regions of eukaryotic mRNAs. Update (2002). Nucleic Acids Research, 30, 335–340. https://doi.org/10.1093/nar/28.1.193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis acting regulatory DNA elements (PLACE) database. Nucleic Acids Research, 27, 297–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lardenois, A., Chalmel, F., Bianchetti, L., Sahel, J.A., Léveillard, T., & Poch, O. (2006). PromAn: an integrated knowledge-based web server dedicated to promoter analysis. Nucleic Acids Research, 34, 578–583. https://doi.org/10.1093/nar/gkl193.

    Article  Google Scholar 

  58. Roth, F.P., Hughes, J.D., Estep, P.W., & Church, G.M. (1998). Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnology, 16, 939–945.

    Article  CAS  PubMed  Google Scholar 

  59. Ghosh, D. (2000). Object-oriented transcription factor database (ooTFD). Nucleic Acids Research, 28(1), 308–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jegga, A.G., Sherwood, S.P., Carman, J.W., Pinski, A.T., Phillips, J.L., Pestian, J.P., & Aronow, B. J. (2002). Detection and visualization of compositionally similar cis regulator element clusters in orthologous and coordinately controlled genes. Genome Research, 12, 1408–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kolchanov, N. A., Podkolodnaya, O. A., Ananko, E. A., Ignatieva, E. V., Stepanenko, I. L., Kel-Margoulis, O. V., et al. (2000). Transcription regulatory regions database (TRRD): Its status in 2000. Nucleic Acids Research, 28, 298–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hou, L. C. L., Wang, J., Xu, D., Dai, L., Zhang, H., & Zhao, Y. (2012). Construction of stress responsive synthetic promoters and analysis of their activity in transgenic Arabidopsis thaliana. Plant Molecular Biology Reports, 30, 1496–1506.

    Article  CAS  Google Scholar 

  63. Liu, W., Mazarei, M., Rudis, M.R., Fethe, M.H., & Stewart, C.N. (2013). Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants. Journal of BMC Biotechnology, 11, 43–52. https://doi.org/10.1186/1472-6750-11-108.

    Article  CAS  Google Scholar 

  64. Rushton, P.J., Reinstadler, A., Lipka, V., Lippok, B., & Somssich, I.E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant Cell, 14, 749–762. https://doi.org/10.1105/tpc.01041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heise, A., Lippok, B., Kirsch, C., & Hahlbrock, K. (2002). Two immediate early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor response element of AtCMPG1. Proc Natl Acad Sci, 99, 9049–9054. https://doi.org/10.1073/pnas.132277699.

    Article  CAS  PubMed  Google Scholar 

  66. Kovalchuk, N., Smith, J., Pallotta, M., Singh, R., Ismagul, A., Eliby, S., Bazanova, N., Milligan, A. S., Hrmova, M., Langridge, P., & Lopato, S. (2009). Defensing promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnology Journal, 8, 47–64. https://doi.org/10.1111/j.1467-7652.2009.00465.x.

    Article  CAS  PubMed  Google Scholar 

  67. Matton, D. P., Prescott, G., Bertrand, C., Camirand, A., & Brisson, N. (1993). Identification of cis acting elements involved in the regulation of the pathogenesis-related gene STH-2 in potato. Plant Molecular Biology, 22, 279–291. https://doi.org/10.1007/BF00014935.

    Article  CAS  PubMed  Google Scholar 

  68. Skriver, K., Olsen, F. L., Rogers, J. C., & Mundy, J. (1991). cis acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proceedings of National Academy of Science USA, 88, 7266–7270. https://doi.org/10.1073/pnas.88.16.7266.

    Article  CAS  Google Scholar 

  69. Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion Plant Biology, 14(3), 290–295.

    Article  CAS  Google Scholar 

  70. Smith., H. (2000). Phytochromes and light signal perception by plants an emerging synthesis. Nature, 407, 585–591. https://doi.org/10.1038/35036500.

    Article  CAS  PubMed  Google Scholar 

  71. Kuno, N., & Furuya, M. (2000). Phytochrome regulation of nuclear gene expression in plants. Seminar Cell Development Biology, 11, 485–493. https://doi.org/10.1006/scdb.2000.0205.

    Article  CAS  Google Scholar 

  72. Moore, I., Samalova, M., & Kurup, S. (2006). Trans activated and chemically inducible gene expression in plants. Plant J Cell Molecular Biology, 45, 651–683. https://doi.org/10.1111/j.1365-313X.2006.02660.x.

    Article  CAS  Google Scholar 

  73. Zuo, J., & Chua, N.H. (2001). Chemical-inducible systems for regulated expression of plant genes. Current Opinion Biotechnology, 1, 146–151. https://doi.org/10.1016/S0958-1669(00)00073-2.

    Article  Google Scholar 

  74. Bang, S.W., Park., S.H., Jeong, J.S., Kim, Y.S., Jung, H., Ha, S.H., & Kim, J.K., et al. (2013). Characterization of the stress-inducible OsNCED3 promoter in different transgenic rice organs and over three homozygous generations. Planta, 237, 211–224. https://doi.org/10.1007/s00425-012-1764-1.

    Article  CAS  PubMed  Google Scholar 

  75. Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R. M., Almeraya, R., Yamaguchi-Shinozaki, K., & Hoisington, D. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 47, 493–500. https://doi.org/10.1139/g03-140.

    Article  CAS  PubMed  Google Scholar 

  76. Sawant, S., Singh, P.K., Madanala, R., & Tuli, R. (2001). Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theoretical and Applied Genetics, 102, 635–644.

    Article  CAS  Google Scholar 

  77. Sleight, S.C., Bartley, B.A., Lieviant, J.A., & Sauro, H.M. (2010). Designing and engineering evolutionary robust genetic circuits. Journal of Biology Engineering. https://doi.org/10.1186/1754-1611-4-12.

    Article  Google Scholar 

  78. Sawant, S.V., Kiran, K., Mehrotra, R., Chaturvedi, C.P., Ansari, S.A., Singh, P., Lodhi, N., & Tuli, R. (2005). A variety of synergistic and antagonistic interactions mediated by cis acting DNA motifs regulate gene expression in plant cells and modulate stability of the transcription complex formed on a basal promoter. Journal of Experimental Botany, 56, 2345–2353.

    Article  CAS  PubMed  Google Scholar 

  79. Petolino, J.F., & Davies, J.P. (2013). Designed transcriptional regulators for trait development. Plant Science.. https://doi.org/10.1016/j.plantsci.2012.12.006.

    Article  PubMed  Google Scholar 

  80. Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D., & Barbas, C.F. (2001). Development of zinc finger domains for recognition of the 5 ‘-ANN-3 ’ family of DNA sequences and their use in the construction of artificial transcription factors. Journal of Biology Chemistry, 276, 29466–29478. https://doi.org/10.1074/jbc.M506654200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Special Program for Research of Transgenic Plants (2016ZX08010-002), the National Natural Science Foundation of China (31601323, 31501366, 31401403), the Key Scientific and the Natural Science Foundation of Science Technology Department of Jilin Province (20170101015JC), Technological Project of Science Technology Department of Jilin Province (20150204027NY).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Li or Xiaowei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aysha, J., Noman, M., Wang, F. et al. Synthetic Promoters: Designing the cis Regulatory Modules for Controlled Gene Expression. Mol Biotechnol 60, 608–620 (2018). https://doi.org/10.1007/s12033-018-0089-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0089-0

Keywords

Navigation