Skip to main content

Advertisement

Log in

Increased Gene Targeting in Ku70 and Xrcc4 Transiently Deficient Human Somatic Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The insertion of foreign DNA at a specific genomic locus directed by homologous DNA sequences, or gene targeting, is an inefficient process in mammalian somatic cells. Given the key role of non-homologous end joining (NHEJ) pathway in DNA double-strand break (DSB) repair in mammalian cells, we investigated the effects of decreasing NHEJ protein levels on gene targeting. Here we demonstrate that the transient knockdown of integral NHEJ proteins, Ku70 and Xrcc4, by RNAi in human HCT116 cells has a remarkable effect on gene targeting/random insertions ratios. A timely transfection of an HPRT-based targeting vector after RNAi treatment led to a 70% reduction in random integration events and a 33-fold increase in gene targeting at the HPRT locus. These findings bolster the role of NHEJ proteins in foreign DNA integration in vivo, and demonstrate that their transient depletion by RNAi is a viable approach to increase the frequency of gene targeting events. Understanding how foreign DNA integrates into a cell’s genome is important to advance strategies for biotechnology and genetic medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Smith, K. (2001). Theoretical mechanisms in targeted and random integration of transgene DNA. Reproduction, Nutrition, Development, 51, 465–485. doi:10.1051/rnd:2001102.

    Article  Google Scholar 

  2. Richardson, C., & Jasin, M. (2000). Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Molecular and Cellular Biology, 20, 9068–9075. doi:10.1128/MCB.20.23.9068-9075.2000.

    Article  CAS  Google Scholar 

  3. Van Gent, D. C., Hoeijmakers, J. H., & Kannar, R. (2001). Chromosomal stability and the DNA double-stranded break connection. Nature Reviews Genetics, 2, 196–206. doi:10.1038/35056049.

    Article  Google Scholar 

  4. Jackson, S. P. (2002). Sensing and repairing DNA double-strand breaks. Carcinogenesis, 23, 687–696. doi:10.1093/carcin/23.5.687.

    Article  CAS  Google Scholar 

  5. Borghesi, L., & Milcarek, C. (2006). From B cell to plasma cell: Regulation of V(D)J recombination and antibody secretion. Immunologic Research, 36, 27–32. doi:10.1385/IR:36:1:27.

    Article  CAS  Google Scholar 

  6. Lieber, M. R., Ma, Y., Pannicke, U., & Schwarz, K. (2003). Mechanism and regulation of human nonhomologous DNA end-joining. Nature Reviews Molecular Cell Biology, 4, 712–720. doi:10.1038/nrm1202.

    Article  CAS  Google Scholar 

  7. Ahnesorg, P., Smith, P., & Jackson, S. P. (2006). XLF interacts with the Xrcc4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell, 124, 301–313. doi:10.1016/j.cell.2005.12.031.

    Article  CAS  Google Scholar 

  8. Buck, D., Malivert, L., de Chasseval, R., Barraud, A., Fondanèche, M. C., Sanal, O., et al. (2006). Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell, 124, 287–299. doi:10.1016/j.cell.2005.12.030.

    Article  CAS  Google Scholar 

  9. Cary, R. B., Peterson, S. R., Wang, J., Bear, D. G., Bradbury, E. M., & Chen, D. J. (1997). DNA looping by Ku and DNA-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 94, 4267–4672. doi:10.1073/pnas.94.9.4267.

    Article  CAS  Google Scholar 

  10. Jones, J. M., Gellert, M., & Yang, W. (2001). A Ku bridge over broken DNA. Structure, 9, 881–884. doi:10.1016/S0969-2126(01)00658-X.

    Article  CAS  Google Scholar 

  11. Teo, S. H., & Jackson, S. P. (1997). Identification of Saccharomyces cerevisiae DNA ligase IV: Involvement in DNA double-strand break repair. The EMBO Journal, 16, 4788–4795. doi:10.1093/emboj/16.15.4788.

    Article  CAS  Google Scholar 

  12. Adachi, N., Ishino, T., Ishii, Y., Takeda, S., & Koyama, H. (2001). DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: Implications for DNA double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 98, 12109–12113. doi:10.1073/pnas.201271098.

    Article  CAS  Google Scholar 

  13. Ferguson, D. O., Sekiguchi, J. M., Chang, S., Frank, K. M., Gao, Y., DePinho, R. A., et al. (2000). The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proceedings of the National Academy of Sciences of the United States of America, 97, 6630–6633. doi:10.1073/pnas.110152897.

    Article  CAS  Google Scholar 

  14. Barnes, D. E., Stamp, G., Rosewell, I., Denzel, A., & Lindahl, T. (1998). Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Current Biology, 8, 1395–1398. doi:10.1016/S0960-9822(98)00021-9.

    Article  CAS  Google Scholar 

  15. Frank, K. M., Sekiguchi, J. M., Seidl, K. J., Swat, W., Rathbun, G. A., Cheng, H., et al. (1998). Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature, 396, 173–177. doi:10.1038/24172.

    Article  CAS  Google Scholar 

  16. Kuziminov, A. (2001). DNA replication meets genetic exchange: Chromosomal damage and its repair by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 98, 8461–8468. doi:10.1073/pnas.151260698.

    Article  Google Scholar 

  17. Jasin, M., de Villiers, J., Weber, F., & Schaffner, W. (1985). High frequency of homologous recombination in mammalian cells between endogenous and introduced SV40 genomes. Cell, 43, 695–703. doi:10.1016/0092-8674(85)90242-9.

    Article  CAS  Google Scholar 

  18. Deng, C., & Capecchi, M. R. (1992). Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the targeting locus. Molecular and Cellular Biology, 12, 3365–3371.

    CAS  Google Scholar 

  19. Scheerer, J. B., & Adair, G. M. (1994). Homology dependence of targeted recombination at the Chinese hamster APRT locus. Molecular and Cellular Biology, 14, 6663–6673.

    CAS  Google Scholar 

  20. Smith, F., Rouet, P., Romanienko, P. J., & Jasin, M. (1995). Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Research, 23, 5012–5019. doi:10.1093/nar/23.24.5012.

    Article  Google Scholar 

  21. Urnov, F. D., Miller, J. C., Lee, Y. L., Beausejour, C. M., Rock, J. M., Augustus, S., et al. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 435, 646–651. doi:10.1038/nature03556.

    Article  CAS  Google Scholar 

  22. Kim, P. M., Allen, C., Wagener, B. M., Shen, Z., & Nickoloff, J. A. (2001). Overexpression of human Rad51 and Rad52 reduces double-strand break-induced homologous recombination in mammalian cells. Nucleic Acids Research, 29, 4352–4360. doi:10.1093/nar/29.21.4352.

    Article  CAS  Google Scholar 

  23. Yanez, R. J., & Porter, A. C. (2002). Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line. Nucleic Acids Research, 30, 740–748. doi:10.1093/nar/30.3.740.

    Article  CAS  Google Scholar 

  24. Johnson, B. L., Thyagarajan, B., Krueger, L., Hirsch, B., & Campbell, C. (1996). Elevated levels of recombinational DNA repair in human somatic cells expressing the Sacharomyces cerevisiae RAD52 gene. Mutation Research, 363, 179–189.

    Article  Google Scholar 

  25. Di Primio, C., Galli, A., Cervelli, T., Zoppè, M., & Rainaldi, G. (2005). Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52. Nucleic Acids Research, 33, 4639–4648. doi:10.1093/nar/gki778.

    Article  CAS  Google Scholar 

  26. Pak, J., & Fire, A. (2007). Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science, 315, 241–244. doi:10.1126/science.1132839.

    Article  CAS  Google Scholar 

  27. Bertolini, L. R., Bertolini, M., Anderson, G. B., Maga, E. A., Madden, K. R., & Murray, J. D. (2007). Transient depletion of Ku70 and Xrcc4 by RNAi as a means to manipulate the non-homologous end-joining pathway. Journal of Biotechnology, 128, 246–257. doi:10.1016/j.jbiotec.2006.10.003.

    Article  CAS  Google Scholar 

  28. Yáñez, R. J., & Porter, A. C. (1999). Gene targeting is enhanced in human cells overexpressing hRAD51. Gene Therapy, 6, 1282–1290. doi:10.1038/sj.gt.3300945.

    Article  Google Scholar 

  29. Burma, S., Chen, B. P., & Chen, D. J. (2006). Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair, 5, 1042–1048. doi:10.1016/j.dnarep.2006.05.026.

    Article  CAS  Google Scholar 

  30. Van Dyck, E., Stasiak, A. Z., Stasiak, A., & West, S. C. (1999). Binding of double-strand breaks in DNA by human Rad52 protein. Nature, 398, 728–731. doi:10.1038/19560.

    Article  Google Scholar 

  31. Allen, C., Halbrook, J., & Nickoloff, J. A. (2003). Interactive competition between homologous recombination and non-homologous end joining. Molecular Cancer Research, 1, 913–920.

    CAS  Google Scholar 

  32. Liang, F., Peter, J., Romanienko, P. J., David, T., Weaver, D. T., Jeggo, P. A., et al. (1996). Chromosomal double-strand break repair in Ku80-deficient cells. Proceedings of the National Academy of Sciences of the United States of America, 93, 8929–8933. doi:10.1073/pnas.93.17.8929.

    Article  CAS  Google Scholar 

  33. Hamilton, A. A., & Thacker, J. (1987). Gene recombination in X-ray-sensitive hamster cells. Molecular and Cellular Biology, 7, 1409–1414.

    CAS  Google Scholar 

  34. Smith-Ravin, J., & Jeggo, P. A. (1989). Use of damaged plasmid to study DNA repair in X-ray sensitive (xrs) strains of Chinese hamster ovary (CHO) cells. International Journal of Radiation Biology, 56, 951–961. doi:10.1080/09553008914552411.

    Article  CAS  Google Scholar 

  35. Liang, F., & Jasin, M. (1996). Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA. The Journal of Biological Chemistry, 271, 14405–14411. doi:10.1074/jbc.271.24.14405.

    Article  CAS  Google Scholar 

  36. Secretan, M. B., Scuric, Z., Oshima, J., Bishop, A. J., Howlett, N. G., Yau, D., et al. (2004). Effect of Ku86 and DNA-PKcs deficiency on non-homologous end-joining and homologous recombination using a transient transfection assay. Mutation Research, 554, 351–364. doi:10.1016/j.mrfmmm.2004.05.016.

    CAS  Google Scholar 

  37. Branch, P., Hampson, R., & Karran, P. (1995). DNA mismatch binding defects, DNA damage tolerance, and mutator phenotypes in human colorectal carcinoma cell lines. Cancer Research, 55, 2304–2309.

    CAS  Google Scholar 

  38. Dominguez-Bendala, J., Masutani, M., & McWhir, J. (2006). Down regulation of PARP-1, but not of Ku80 or DNA-PKcs results in higher gene targeting efficiency. Cell Biology International, 30, 389–393.

    Article  CAS  Google Scholar 

  39. Rooney, S., Chaudhuri, J., & Alt, F. W. (2004). The role of the non-homologous end-joining pathway in lymphocyte development. Immunological Reviews, 200, 115–131. doi:10.1111/j.0105-2896.2004.00165.x.

    Article  CAS  Google Scholar 

  40. Glaab, W. E., & Tindall, K. R. (1997). Mutation rate at the HPRT locus in human cancer cell lines with specific mismatch repair gene defects. Carcinogenesis, 18, 1–8. doi:10.1093/carcin/18.1.1.

    Article  CAS  Google Scholar 

  41. Moore, P. D., Song, K. Y., Chekuri, L., Wallace, L., & Kucherlapati, R. S. (1986). Homologous recombination in a Chinese hamster X-ray-sensitive mutant. Mutation Research, 160, 149–155. doi:10.1016/0027-5107(86)90038-2.

    CAS  Google Scholar 

  42. Ayene, I. S., Ford, L. P., & Koch, C. J. (2005). Ku protein targeting by Ku70 small interfering RNA enhances human cancer cell response to topoisomerase II inhibitor and gamma radiation. Molecular Cancer Therapeutics, 4, 529–536. doi:10.1158/1535-7163.MCT-04-0130.

    Article  CAS  Google Scholar 

  43. Sibani, S., Price, G. B., & Zannis-Hadjopoulos, M. (2005). Ku80 binds to human replication origins prior to the assembly of the ORC complex. Biochemistry, 44, 7885–7896. doi:10.1021/bi047327n.

    Article  CAS  Google Scholar 

  44. Ninomiya, Y., Suzuki, K., Ishii, C., & Inoue, H. (2004). Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proceedings of the National Academy of Sciences of the United States of America, 17, 12248–12253. doi:10.1073/pnas.0402780101.

    Article  Google Scholar 

  45. Krappmann, S., Sasse, C., & Braus, G. H. (2006). Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryotic Cell, 5, 212–215. doi:10.1128/EC.5.1.212-215.2006.

    Article  CAS  Google Scholar 

  46. Takahashi, T., Masuda, T., & Koyama, Y. (2006). Enhanced gene targeting frequency in Ku70 and Ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Molecular Genetics and Genomics, 275, 460–470. doi:10.1007/s00438-006-0104-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Andrew Porter for kindly supplying the HPRT vector and Dr. Wolf D. Heyer for his assistance and valuable discussions during the experiments and for reading the manuscript. This study was supported by the UC Discovery Grant bio03-10412 with Invitrogen Corp. Luciana R. Bertolini was supported by a doctoral fellowship from CAPES/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolini, L.R., Bertolini, M., Maga, E.A. et al. Increased Gene Targeting in Ku70 and Xrcc4 Transiently Deficient Human Somatic Cells. Mol Biotechnol 41, 106–114 (2009). https://doi.org/10.1007/s12033-008-9098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9098-8

Keywords

Navigation