Skip to main content
Log in

Lipopolysaccharide Exacerbates Ketamine-Induced Psychotic-Like Behavior, Oxidative Stress, and Neuroinflammation in Mice: Ameliorative Effect of Diosmin

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Schizophrenia, a neuropsychiatric disorder has been associated with aberrant neurotransmission affecting behaviors, social preference, and cognition. Limitations in understanding its pathogenesis via the dopamine hypothesis have engendered other hypotheses such as the glutamate hypothesis. That antagonism of the N-methyl-D-aspartate receptor (NMDAR) elicits schizophrenia-like behaviors indistinguishable from the disorder in animal and human models. There are growing concerns that redox imbalance and neuro-immuno dysfunction may play role in aggravating the symptomologies of this disorder. This 14-day treatment study was designed to investigate the effect of diosmin on lipopolysaccharide (LPS) plus ketamine (NMDAR antagonist). Mice were divided into 4 groups (n = 6). Group 1 was administered 5% DMSO (10 mL/kg, i.p) while group 2–4 received LPS (0.1 mg/kg, i.p) daily for 14 days. Diosmin (50 mg/kg, i.p) and risperidone (0.5 mg/kg, i.p) were given to groups 3 and 4 respectively. Groups 2–4 were given KET (20 mg/kg, i.p.) daily from days 8–14. Behavioral tests were done 30 min after the last dose, and oxidative stress and neuroinflammatory maker were assayed. LPS plus ketamine-induced hyperlocomotion, stereotypy, decreased social preference, and memory impairment. Furthermore, LPS plus-ketamine-induced oxidative stress (reduced GSH, CAT, SOD, and increased MDA and nitrite levels) and marked pro-inflammatory cytokines TNF-α and IL-6 suggesting neuroinflammation. However, diosmin attenuated behavioral deficits and improved memory. Additionally, diosmin potentiated antioxidant level via increased GSH, CAT, and SOD while reducing MDA and nitrite levels. Finally, diosmin reduced TNF-α and IL-6 suggesting anti-neuro-immuno activity. Conclusively, diosmin attenuated LPS plus ketamine-induced behavioral deficits, oxidative stress, neuroinflammation, and improved memory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAT:

Catalase

KET:

Ketamine

TNF-α:

Tumor necrosis factor-alpha

DSM:

Diosmin

LPS:

Lipopolysaccharide

GSH:

Glutathione

MDA:

Malondialdehyde

IL-6:

Interleukin-6

MPO:

Myeloperoxidase

References

  • Abdel-Salam OME, Eman Y, Nadia M, Walaa A (2015) Nuclear Factor-Kappa B and other oxidative stress markers in serum of autistic children. Open J Mol Integr Physiol 05(01):18–27

    Article  Google Scholar 

  • AlAsmari AF, Alharbi M, Alqahtani F, Alasmari F, AlSwayyed M, Alzarea SI, Al-Alallah IA, Alghamdi A, Hakami HM, Alyousef MK, Sari Y, Ali N (2021) Diosmin alleviates doxorubicin-induced liver injury via modulation of oxidative stress-mediated hepatic inflammation and apoptosis via NfkB and MAPK pathway: a preclinical study. Antioxidants (Basel) 10(12):1998

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque EX, Schwarcz R (2013) Kynurenic acid as an antagonist of alpha7 nicotinic acetylcholine receptors in the brain: facts and challenges. J Biochem Pharmacol 85:1027–1032

    Article  CAS  Google Scholar 

  • Ali N, AlAsmari AF, Imam F, Ahmed MZ, Alqahtani F, Alharbi M, AlSwayyed M, AlAsmari F, Alasmari M, Alshammari A, Fantoukh OI, Alanazi MM (2021) Protective effect of diosmin against doxorubicin-induced nephrotoxicity. Saudi J Biol Sci 28(8):4375–4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo S, Jose A, Chaves M et al (2016) Reversal of schizophrenia-like symptoms and immune alterations in mice by immunomodulatory drugs. J Psychiatr Res. https://doi.org/10.1016/j.jpsychires.2016.09.017

    Article  PubMed  Google Scholar 

  • Aya-Ebi OE, Ben-Azu B, Abayomi MA, Aderibigbe AO (2020) Diosmin attenuates schizophrenia-like behaviors, oxidative stress, and acetylcholinesterase activity in mice. Drug Metabol Pers Ther 35(4):20200119. https://doi.org/10.1515/dmpt-2020-0119

  • Azucena IC, González-Trujano ME, Pellicer F, Alvarado-Vásquez N, López-Muñoz FJ (2018) Central and peripheral anti-hyperalgesic effects of diosmin in a neuropathic pain model in rats. Biomed Pharmacother 97:310–320

    Article  Google Scholar 

  • Azucena IC, Maria-Eva G, Francisco P, Francisco JL (2016) Antihyperalgesic effect of hesperidin improves with diosmin in experimental neuropathic pain. BioMed Res Int. https://doi.org/10.1155/2016/8263463

    Article  Google Scholar 

  • Becker A, Grecksch G (2004) Ketamine-induced changes in rat behavior: a possible animal model of schizophrenia. Test of predictive validity. Prog Neuropsychopharmacol Biol Psychiatry 28:1267–2177

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    Article  CAS  PubMed  Google Scholar 

  • Ben-Azu B, Aderibigbe AO, Ajayi AM, Iwalewa EO (2016) Neuroprotective effects of the ethanol stem bark extracts of Terminalia ivorensis in ketamine-induced schizophrenia-like behaviours and oxidative damage in mice. Pharm Biol 54:2871–2879

    Article  PubMed  Google Scholar 

  • Ben-Azu B, Aderibigbe AO, Omogbiya IA, Ajayi AM, Iwalewa EO (2017) Morin pretreatment attenuates schizophrenia-like behaviors in experimental animal models. Drug Res 68:159–167

    Google Scholar 

  • Ben-Azu B, Aderibigbe AO, Eneni AO, Ajayi AM, Umukoro S, Iwalewa EO (2018a) Morin attenuates neurochemical changes and increased oxidative/nitrergic stress in brains of mice exposed to ketamine: prevention and reversal of schizophrenia-like symptoms. Neurochem Res 43(9):1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AO, Umukoro S, Iwalewa EO (2018b) Involvement of GABAergic, BDNF and Nox-2 mechanisms in the prevention and reversal of ketamine-induced schizophrenia-like behavior by morin in mice. Brain Res Bull 139:292–306

    Article  CAS  PubMed  Google Scholar 

  • Ben-Azu B, Aderibigbe AO, Omogbiya IA, Ajayi AM, Owoeye O, Olonode T, Iwalewa EO (2018c) Probable mechanisms involved in the antipsychotic-like activity of morin in mice. Biomed Pharmacother 105:1079–1090

    Article  CAS  PubMed  Google Scholar 

  • Ben-Azu B, Aderibigbe AO, Omogbiya IA, Ajayi AM, Iwalewa EO (2018d) Morin pretreatment attenuates schizophrenia-like behaviors in experimental animal models. Drug Res (Stuttg) 68(3):159–167

    Article  CAS  PubMed  Google Scholar 

  • Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AO, Omogbiya IA, Owoeye O, Umukoro S, Iwalewa EO (2019) Morin decreases cortical pyramidal neuron degeneration via inhibition of neuroinflammation in mouse model of schizophrenia. Int Immunopharmacol 70:338–435

    Article  CAS  PubMed  Google Scholar 

  • Bessis A, Bechade C, Bernard D, Roumier A (2007) Microglial control of neuronal death and synaptic properties. Glia 55:233–238

    Article  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Bowie CR, Harvey PD (2006) Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat 2:531–536

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

  • Brown AS, Melisa DB, Stefan G, Catherine AS, Richard JW, Michaeline B, Vicki PB, Ezra SS (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61(8):774–780

    Article  PubMed  Google Scholar 

  • Brydon L, Harrison NA, Walker C, Steptoe A (2008) Critchley HD. Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry 63:1022–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton S (2006) Symptom domains of schizophrenia: the role of atypical antipsychotic agents. J Psychopharmacol 20:6–19. https://doi.org/10.1177/1359786806071237

    Article  PubMed  Google Scholar 

  • Capuron L, Miller AH (2004) Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 56:819–824

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia. New Evidence Annu Rev Pharmacol Toxicol 41:237–260

    Article  CAS  PubMed  Google Scholar 

  • Casadesus G, Webber KM, Atwood CS, Pappolla MA, Perry G, Bowen RL, Smith MA (2006) Luteinizing hormone modulates cognition and amyloid-beta deposition in Alzheimer APP transgenic mice. Biochim Biophys Acta 1762:447–452

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Rajkumar V, Surajit G, Gautam P (2012) Neurochemical and molecular characterization of ketamine-induced experimental psychosis model in mice. Neuropharmacology 63:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Chia-Chen HM, Hung Lin, Juei-Tang C, Ming W (2017) Antihypertensive action of diosmin, a citrus flavonoid, is induced through endogenous β-endorphin in Type I-like diabetic rat. Clin Exp Pharmacol Physiol 44(5):549–555

    Article  Google Scholar 

  • Chien IC, Hsu JH, Bih SH et al (2008) Prevalence, correlates, and disease patterns of antipsychotic use in Taiwan. Psychiatry Clin Neurosci 62:677–684

    Article  PubMed  Google Scholar 

  • Chindo BA, Bulus A, Tijani AY et al (2012) Ketamine-enhanced immobility in forced swim test: a possible animal model for the negative symptoms of schizophrenia. Prog Neuropsychopharm Biol Psychiatry 38:310–316

    Article  CAS  Google Scholar 

  • Coyle JT, Tsai G, Goff D (2003) Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann N Y Acad Sci 1003:318–327

    Article  CAS  PubMed  Google Scholar 

  • Cuesta MJ, Peralta V, Zarzuela A (2001) Effects of olanzapine and other antipsychotics on cognitive function in chronic schizophrenia: a longitudinal study. Schizophr Res 48:17–28. https://doi.org/10.1016/S0920-9964(00)00112-2

    Article  CAS  PubMed  Google Scholar 

  • da Silva AT, Maia C, Filho AJ, Monte AS, de Góis IQA, Cordeiro RC, de Jesus SMM, de Freitas LR, Freitas LD, Maes M, Macêdo D (2017) Reversal of schizophrenia-like symptoms and immune alterations in mice by immunomodulatory drugs. J Psychiatr Res 84:49–58

    Article  Google Scholar 

  • Darrell S, Ahsan H, Song L, Donna D, Huayan H (2016) Diosmin reduces cerebral Aβ levels, tau hyperphosphorylation. J Neuroimmunol 299:98–106

    Article  Google Scholar 

  • Das I, Khan NS (1998) Increased arachidonic acid induced platelet chemiluminescence indicates cyclooxygenase overactivity in schizophrenic subjects. Prostaglandins Leukot Essent Fat Acids 58(3):165–168

    Article  CAS  Google Scholar 

  • Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807

    Article  PubMed  Google Scholar 

  • Drexhage RC, Knijff EM, Padmos RC, Heul-Nieuwenhuijzen L, Beumer W, Versnel MA, Drexhage HA (2010) The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 10:59–76

    Article  CAS  PubMed  Google Scholar 

  • Eßlinger M, Wachholz S, Manitz M, Plümper J, Sommer R, Juckel G et al (2016) Schizophrenia associated sensory gating deficits develop after adolescent microglia activation. Brain Behav Immun 58:99–106

    Article  PubMed  Google Scholar 

  • Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68:748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellman GL, Courtney KD, Andres VJ, Feather-Stone RM (1961) A new and rapid colorimetric ddetermination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Faisal I, Naif OA, Mohammed MA, Mushtaq AA, Khairy MAZ, Muzaffar I, Khalid MA, Ali RAH, Sabry MA, Sheikh FA (2015) Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-kB activation against LPS-induced acute lung injury in mice. Pharmacol Res 102:1–11

    Article  Google Scholar 

  • Fan X, Goff DC, Henderson DC (2007) Inflammation and schizophrenia. Expert Rev Neurother 7:789–796

    Article  CAS  PubMed  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236e45

  • Friedman JI (2004) Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology 174(1):45–53. https://doi.org/10.1007/s00213-004-1794-x. Epub 2004 Feb 19 PMID: 15205878

    Article  CAS  PubMed  Google Scholar 

  • Ganong AH, Cotman CW (1986) Kynurenic acid and quinolinic acid act at Nmethyl-D-aspartate receptors in the rat hippocampus. J Pharmacol Exp Ther 236:293–299

    CAS  PubMed  Google Scholar 

  • Garver DL, Rebecca LT, Jennifer AH (2003) Elevated Interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype. Neuropsychopharmacology 28(8):1515–1520

    Article  CAS  PubMed  Google Scholar 

  • Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Tannenbaum SR, Goldman P (1981) Nitrate synthesis in the germ free and conventional rat. Science 212:56–58

    Article  CAS  PubMed  Google Scholar 

  • Grigoleit JS, Kullmann JS, Wolf OT, Hammes F, Wegner A, Jablonowski S, Engler H, Gizewski E, Oberbeck R, Schedlowski M (2011) Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS ONE 6:e28330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta G, Imran K, Muhammad A (2012) Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J Ethnopharmacol 141:810–816

    Article  CAS  PubMed  Google Scholar 

  • Habib CN, Mohamed MR, Tadros MG, Tolba MF, Menze ET, Masoud SI (2022) The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson’s disease in rats. Eur J Pharmacol 914:174573

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Do KQ (2016) Linking early-life NMDA receptor function and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosc 17:125–134

    Article  CAS  Google Scholar 

  • Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD (2009) Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 66:407–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non alpha7 nicotinic receptor expression: physiopathological implications. J Neurosc 21:7463–7473

    Article  CAS  Google Scholar 

  • Ishola IO, Ben-Azu B, Adebayo OA, Ajayi AM, Omorodion IL, Edje KE, Adeyemi OO (2021) Prevention and reversal of ketamine-induced experimental psychosis in mice by the neuroactive flavonoid, hesperidin: the role of oxidative and cholinergic mechanisms. Brain Res Bull 177:239–251

    Article  CAS  PubMed  Google Scholar 

  • Jollow DJ, Michell JR, Zampaglione N, Gillete J (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione an evidence for 3,4 bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  CAS  PubMed  Google Scholar 

  • Konsman JP, Veeneman J, Combe C, Poole S, Luheshi GN, Dantzer R (2008) Central nervous system action of Interlukon-1 mediates activation of limbic structures and behavioural depressionin response to peripheral administration of bacterial lipopolysaccharide. Eur J Neurosci 28:2499–2510

    Article  CAS  PubMed  Google Scholar 

  • Koyama A, Ito H, Nakanishi M, Sawamura K, Higuchi T (2008) Addition of antipsychotics to medication regimens during schizophrenic inpatient care. Psychiatry Clin Neurosc 62:56–64

    Article  Google Scholar 

  • Krebs MO, Gauchy C, Desban M (1994) Role of dynorphin and GABA in the inhibitory regulation of NMDA-induced dopamine release in striosome- and matrix-enriched areas of the rat striatum. J Neurosci 14:2435–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Liddle EB, Fernandes CC, Palaniyappan L, Hall EL, Robson SE, Simmonite M, Fiesal J, Katshu MZ, Qureshi A, Skelton M, Christodoulou NG, Brookes MJ, Morris PG, Liddle PF (2020) Glutathione and glutamate in schizophrenia: a 7T MRS study. Mol Psychiatry 25(4):873–882

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck C (2000) Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [(123)I] beta-CIT. Biol Psychiatry 47:371–379

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  CAS  PubMed  Google Scholar 

  • MacDowell KS, Garcıa-Bueno B, Madrigall JLM, Parellada M, Arango C, Mico JA et al (2013) Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation. Int J Neuropsychopharmacol 16:121–135

    Article  CAS  PubMed  Google Scholar 

  • Martin LF, Freedman R (2007) Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol 78:225–246

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Park S, Kessler R (1999) Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc Natl Acad Sci U S A 96:13591–13593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monji A, Kato T, Kanba S (2009) Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63:257–265

    Article  CAS  PubMed  Google Scholar 

  • Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M et al (2013) Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:115–121

    Article  CAS  Google Scholar 

  • Monte AS, de Souza GC, Roger S et al (2013) Prevention and reversal of ketamine-induced schizophrenia related behavior by minocycline in mice: Possible involvement of antioxidant and nitrergic pathway. J Psychopharmacol 27:1032–1043

    Article  PubMed  Google Scholar 

  • Mortensen PB, Nørgaard-Pedersen B, Waltoft BL, Sørensen TL, Hougaard D, Torrey EF et al (2007) Toxoplasma gondii as a risk factor for early-onset schizophrenia: analysis of filter paper blood samples obtained at birth. Biol Psychiatry 61:688–693

    Article  PubMed  Google Scholar 

  • Naso L, Martínez VR, Lezama L, Salado C, Valcarcel M, Ferrer EG (2016) Oxidant, anticancer activities and mechanistic studies of the flavone glycoside diosmin and Its oxidovanadium (IV) complex. Interactions with bovine serum albumin. Bioorg Med Chem 24:4108–4019

    Article  CAS  PubMed  Google Scholar 

  • Neill JC, Barnes S, Cook S et al (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128:419–432

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JC, Lawson MA, Andre C, Briley EM, Szegedi SS, Lestage J, Castanon N, Herkenham M, Dantzer R, Kelley KW (2009a) Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behaviour. J Immunol 182:3202–3212

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009b) Lipopolysaccharide-induced depressive-like behaviour is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522

    Article  CAS  PubMed  Google Scholar 

  • Okhawa H, Ohishi N, Yagi E (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anals of Biochemistry 95:351–358

    Article  Google Scholar 

  • Onaolapo OJ, Ademakinwa OO, Olalekan TO, Onaolapo AY (2017) Ketamine-induced behavioural and brain oxidative changes in mice: an assessment of possible beneficial effects of zinc as mono- or adjunct therapy. Psychopharmacology. https://doi.org/10.1007/s00213-017-4666-x

    Article  PubMed  Google Scholar 

  • Oshodi TO, Ben-Azu B, Ishola IO, Ajayi AM, Emokpae O, Umukoro S (2021) Molecular mechanisms involved in the prevention and reversal of ketamine-induced schizophrenia-like behavior by rutin: the role of glutamic acid decarboxylase isoform-67, cholinergic, Nox-2-oxidative stress pathways in mice. Mol Biol Rep 48:2335–2350

    Article  CAS  PubMed  Google Scholar 

  • Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63:801–808

    Article  CAS  PubMed  Google Scholar 

  • Raedler TJ, Tandon R (2006) Cholinergic mechanisms in schizophrenia: current concepts. Curr Psych & Therap Rep 4:20–26. https://doi.org/10.1007/BF02629410

    Article  Google Scholar 

  • Réus GZ, Simões LR, Colpo GD, Scaini G, Oses JP, Generoso JS, Prossin AR, Kaddurah-Daouk R, Quevedo J, Barichello T (2017) Ketamine potentiates oxidative stress and influences behavior and inflammation in response to lipolysaccharide (LPS) exposure in early life. Neuroscience 353:17–25

    Article  PubMed  Google Scholar 

  • Sahabuddin A, Nitin M, Monash M, Liakat C, Mohit K, Nityanand B, Anwaruddin A, Mangala L (2016) Diosmin modulates the NF-Kb signal transduction pathways and downregulation of various oxidative stress markers in Alloxan-induced diabetic nephropathy. Inflammation 39(5):1783–1797

    Article  Google Scholar 

  • Schwieler L, Larsson MK, Skogh E et al (2015) Increased levels of IL-6 in the 781 cerebrospinal fluid of patients with chronic schizophrenia–significance for 782 activation of the kynurenine pathway. J Psychiatry Neurosci 40:126–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007a) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27:10695–10702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SEP, Li J, Garbett K et al (2007b) Maternal immune activation alters fetal brain 787 development through interleukin-6. J Neurosci 27(10695–702):788. https://doi.org/10.1523/JNEUROSCI.2178-07.2007

    Article  CAS  Google Scholar 

  • Söderlund J, Schröder J, Nordin C, Samuelsson M, Walther-Jallow L, Karlsson H, Erhardt S, Engberg G (2009) Activation of brain interleukin-1β in schizophrenia. Mol Psychiatry 14:1069–1071

    Article  PubMed  PubMed Central  Google Scholar 

  • Stahl SM (2007) Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia. CNS Spectr 12:265–268

    Article  PubMed  Google Scholar 

  • van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E et al (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11 C]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822

    Article  PubMed  Google Scholar 

  • Vasconcelos GS, Naiara CX, de Sousa CNS, Oliveira Tde Q, Laio LLL, de Lucena DF, Clarissa SG, Danielle M, Vasconcelos SMM (2015) Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophr Res 165:163–170

    Article  PubMed  Google Scholar 

  • Wang F, Shing M, Huen Y, Tsang SY, Xue H (2005) Neuroactive flavonoids interacting with GABAA receptor complex. Curr Drug Targets CNS Neurol Disord 4:575–585

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Zheng Y, Ding Y, Liu Y, Zhang X, Renrong W et al (2014) Minocycline and risperidone prevent microglia activation and rescue behavioral deficits induced by neonatal intrahippocampal injection of lipopolysaccharide in rats. PLoS ONE 9:e93966

    Article  PubMed  PubMed Central  Google Scholar 

  • Zmarowski A, Wu HQ, Brooks JM, Potter MC, Pellicciari R, Schwarcz R, Bruno JP (2009) Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci 29:529–538

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Yuan D, Yang J, Yu Y (2022) Effects of diosmin on vascular leakage and inflammation in a mouse model of venous obstruction. Front Nutr 9:831485

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized and designed by Aya-Ebi Okubo Eneni, Ben-Azu Benneth, and Aderibigbe Oladele Adegbuyi. Aya-Ebi Okubo and Ben-Azu Benneth performed the study under the supervision of Aderibigbe Oladele Adegbuyi. Abayomi Mayowa Ajayi assisted with the biochemical analysis in the laboratory. All authors were involved in material preparation, data collection, and analysis. The first draft of the manuscript was written by Aya-Ebi, and all other authors revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aya-Ebi Okubo Eneni.

Ethics declarations

Ethics Approval

All experiments were approved and performed under the guidelines of the University of Ibadan’s Animals Ethical Committee (ethical number: UI-ACUREC/2017/0111) and in strict compliance with the National Institutes of Health Guide for Care and Use of Laboratory Animals (Publication number: 85–23, Revised 1985).

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eneni, AE.O., Ben-Azu, B., Ajayi, A.M. et al. Lipopolysaccharide Exacerbates Ketamine-Induced Psychotic-Like Behavior, Oxidative Stress, and Neuroinflammation in Mice: Ameliorative Effect of Diosmin. J Mol Neurosci 73, 129–142 (2023). https://doi.org/10.1007/s12031-022-02077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-02077-9

Keywords

Navigation