Skip to main content
Log in

Rapid-acting and long-lasting antidepressant-like action of (R)-ketamine in Nrf2 knock-out mice: a role of TrkB signaling

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The transcription nuclear factor-erythroid factor 2-related factor 2 (Nrf2) plays a key role in inflammation that is involved in depression. We previously reported that Nrf2 knock-out (KO) mice exhibit depression-like phenotypes through systemic inflammation. (R)-ketamine, an enantiomer of ketamine, has rapid-acting and long-lasting antidepressant-like effects in rodents. We investigated whether (R)-ketamine can produce antidepressant-like effects in Nrf2 KO mice. Effects of (R)-ketamine on the depression-like phenotypes in Nrf2 KO mice were examined. Furthermore, the role of TrkB in the antidepressant-like actions of (R)-ketamine was also examined. In the tail-suspension test (TST) and forced swimming test (FST), (R)-ketamine (10 mg/kg) significantly attenuated the increased immobility times of TST and FST in the Nrf2 KO mice. In the sucrose preference test (SPT), (R)-ketamine significantly ameliorated the reduced preference of SPT in Nrf2 KO mice. Decreased expression of synaptic proteins (i.e., GluA1 and PSD-95) in the medial prefrontal cortex (mPFC) of Nrf2 KO mice was significantly ameliorated after a single injection of (R)-ketamine. Furthermore, the pre-treatment with the TrkB antagonist ANA-12 (0.5 mg/kg) significantly blocked the rapid and long-lasting antidepressant-like effects of (R)-ketamine in Nrf2 KO mice. Furthermore, ANA-12 significantly antagonized the beneficial effects of (R)-ketamine on decreased expression of synaptic proteins in the mPFC of Nrf2 KO mice. These findings suggest that (R)-ketamine can produce rapid and long-lasting antidepressant-like actions in Nrf2 KO mice via TrkB signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dantzer R, O’Connor C, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hashimoto K (2009) Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 61:105–123

    CAS  PubMed  Google Scholar 

  3. Raison CL, Lowry CA, Rook GA (2010) Inflammation, sanitation, and consternation: loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch Gen Psychiatry 67:1211–1224

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashimoto K (2015) Inflammatory biomarkers as differential predictors of antidepressant response. Int J Mol Sci 16:7796–7801

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang JC, Yao W, Hashimoto K (2016) Brain-derived neurotrophic factor (BDNF) – TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 14:721–731

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Beurel E, Toups M, Nemeroff CB (2020) The bidirectional relationship of depression and inflammation: double trouble. Neuron 107:234–256

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dowlati Y, Hermann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457

    CAS  PubMed  Google Scholar 

  9. Young JJ, Bruno D, Pomara N (2014) A review of the relationship between pro-inflammatory cytokines and major depressive disorder. J Affect Disord 169:15–20

    CAS  PubMed  Google Scholar 

  10. Haapakoski R, Mathieu J, Ebmeiner KP, Alenius H, Kivimäki M (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nettis MA, Pariante CM (2020) Is there neuroinflammation in depression? Understanding the link between the brain and the peripheral immune system in depression. Int Rev Neurobiol 152:23–40

    PubMed  Google Scholar 

  12. O’Connell MA, Hayes JD (2015) The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochem Soc Trans 43:687–689

    CAS  PubMed  Google Scholar 

  13. Suzuki T, Yamamoto M (2015) Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med 88:93–100

    CAS  PubMed  Google Scholar 

  14. Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43:621–626

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashimoto K (2018) Essential role of Keap1-Nrf2 signaling in mood disorders: overview and future perspective. Front Pharmacol 9:1182

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamamoto M, Kensler TW, Motohashi H (2018) The Keap1-Nrf2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98:1169–1203

    CAS  PubMed  Google Scholar 

  17. Baird L, Yamamoto M (2020) The molecular mechanisms regulating the Keap1-Nrf2 pathway. Mol Cell Biol 40:e00099-e120

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yao W, Zhang JC, Ishima T, Dong C, Yang C, Ren Q, Ma M, Han M, Wu J, Suganuma H, Ushida Y, Yamamoto M, Hashimoto K (2016) Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Sci Rep 6:30659

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, Han M, Wu J, Ushida Y, Suganuma H, Hashimoto K (2017) Prophylactic effects of sulforaphane on depression-like behavior and dendritic changes in mice after inflammation. J Nutr Biochem 39:134–144

    CAS  PubMed  Google Scholar 

  20. Zhang JC, Yao W, Dong C, Han M, Shirayama Y, Hashimoto K (2018) Keap1-Nrf2 signaling pathway confers resilience versus susceptibility to inescapable electric stress. Eur Arch Psychiatry Clin Neurosci 268:865–870

    PubMed  Google Scholar 

  21. Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS (2019) Ketamine: a paradigm shift for depression research and treatment. Neuron 101:774–778

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Abdallah CG, Krystal JH (2020) Ketamine and rapid acting antidepressants: are we ready to cure, rather than treat depression? Behav Brain Res 390:112628

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavender E, Hirasawa-Fujita M, Domino EF (2020) Ketamine’s dose related multiple mechanisms of actions: dissociative anesthetic to rapid-antidepressant. Behav Brain Res 390:112631

    CAS  PubMed  Google Scholar 

  24. Zhang K, Hashimoto K (2019) An update on ketamine and its two enantiomers as rapid-acting antidepressants. Expert Rev Neurother 19:83–92

    CAS  PubMed  Google Scholar 

  25. Zhang JC, Li SX, Hashimoto K (2014) R (−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav 116:137–141

    CAS  PubMed  Google Scholar 

  26. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fukumoto K, Toki H, Iijima M, Hashihayata T, Yamaguchi J, Hashimoto K, Chaki S (2017) Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharmacol Exp Ther 361:9–16

    CAS  PubMed  Google Scholar 

  28. Yang C, Ren Q, Qu Y, Zhang JC, Ma M, Dong C, Hashimoto K (2018) Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biol Psychiatry 83:18–28

    CAS  PubMed  Google Scholar 

  29. Chang L, Zhang K, Pu Y, Qu Y, Wang SM, Xiong Z, Ren Q, Dong C, Fujita Y, Hashimoto K (2019) Comparison of antidepressant and side effects in mice after intranasal administration of (R, S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharmacol Biochem Behav 181:53–59

    CAS  PubMed  Google Scholar 

  30. Yang C, Han M, Zhang JC, Ren Q, Hashimoto K (2016) Loss of parvalbumin-immunoreactivity in mouse brain regions after repeated intermittent administration of esketamine, but not R-ketamine. Psychiatry Res 239:281–283

    CAS  PubMed  Google Scholar 

  31. Hashimoto K, Kakiuchi T, Ohba H, Nishiyama S, Tsukada H (2017) Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys. Eur Arch Psychiatry Clin Neurosci 267:173–176

    PubMed  Google Scholar 

  32. Tian Z, Dong C, Fujita A, Fujita Y, Hashimoto K (2018) Expression of heat shock protein HSP-70 in the retrosplenial cortex of rat brain after administration of (R, S)-ketamine and (S)-ketamine, but not (R)-ketamine. Pharmacol Biochem Behav 172:17–21

    CAS  PubMed  Google Scholar 

  33. Tan Y, Hashimoto K (2020) Risk of psychosis after repeated intermittent administration of (S)-ketamine, but not (R)-ketamine, in mice. J Affect Disord 269:198–200

    CAS  PubMed  Google Scholar 

  34. Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7:25–38

    CAS  PubMed  Google Scholar 

  35. Leal GC, Bandeira ID, Correia-Melo FS, Telles M, Mello RP, Vieira F, Lima CS, Jesus-Nunes AP, Guerreiro-Costa LNF, Marback RF, Caliman-Fontes AT, Marques BLS, Bezerra MLO, Dias-Neto AL, Silva SS, Sampaio AS, Sanacora G, Turecki G, Loo C, Lacerda ALT, Quarantini LC (2020) Intravenous arketamine for treatment-resistant depression: open-label pilot study. Eur Arch Psych Clin Neurosci. https://doi.org/10.1007/s00406-020-01110-5

    Article  Google Scholar 

  36. Hashimoto K (2019) Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective. Psychiatry Clin Neurosci 73:613–627

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang C, Yang J, Luo A, Hashimoto K (2019) Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Transl Psychiatry 9:280

    PubMed  PubMed Central  Google Scholar 

  38. Wei Y, Chang L, Hashimoto K (2020) A historical review of antidepressant effects of ketamine and its enantiomers. Pharmacol Biochem Behav 190:172870

    CAS  PubMed  Google Scholar 

  39. Hashimoto K (2020a) Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Biochem Pharmacol 177:113935

    CAS  PubMed  Google Scholar 

  40. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioral antidepressant responses. Nature 475:91–95

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Björkholm C, Monteggia LM (2015) BDNF- a key transducer of antidepressant effects. Neuropharmacology 102:72–79

    PubMed  PubMed Central  Google Scholar 

  42. Liu WX, Wang J, Xie ZM, Xu N, Zhang GF, Jia M, Zhou ZQ, Hashimoto K, Yang JJ (2016) Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable mild stress model of depression. Psychopharmacology 233:405–415

    CAS  PubMed  Google Scholar 

  43. Sun HL, Zhou ZQ, Zhang GF, Yang C, Wang XM, Shen JC, Hashimoto K, Yang JJ (2016) Role of hippocampal p11 in the sustained antidepressant effect of ketamine in the chronic unpredictable mild stress model. Transl Psychiatry 6:e741

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li S, Luo X, Hua D, Wang Y, Zhan G, Huang N, Jiang R, Yang L, Zhu B, Yuan X, Luo A, Yang C (2020) Ketamine alleviates postoperative depression-like symptoms in susceptible mice: the role of BDNF-TrkB signaling. Front Pharmacol 10:1702

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hashimoto K (2020b) Brain-derived neurotrophic factor -TrkB signaling and the mechanism of antidepressant activity by ketamine in mood disorders. Eur Arch Psychiatry Clin Neurosci 270:137–138

    PubMed  Google Scholar 

  46. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biphys Res Commun 236:313–322

    CAS  Google Scholar 

  47. Cazorla M, Prémont J, Mann A, Girad N, Kellendonk C, Rognan D (2011) Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 121:1846–1857

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang JC, Wu J, Fujita Y, Yao W, Ren Q, Yang C, Li SX, Shirayama Y, Hashimoto K (2014) Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol 18:pyu077

    PubMed  Google Scholar 

  49. Ren Q, Ma M, Yang C, Zhang JC, Yao W, Hashimoto K (2015) BDNF-TrkB signaling in the nucleus accumbens shell of mice has key role in methamphetamine withdrawal symptoms. Transl Psychiatry 5:e666

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, Han M, Hashimoto K (2015) Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology 232:4325–4335

    CAS  PubMed  Google Scholar 

  51. Qu Y, Yang C, Ren Q, Ma M, Dong C, Hashimoto K (2017) Comparison of (R)-ketamine and lanicemine on depression-like phenotype and abnormal composition of gut microbiota in a social defeat stress model. Sci Rep 7:15725

    PubMed  PubMed Central  Google Scholar 

  52. Wang S, Ishima T, Zhang J, Qu Y, Chang L, Pu Y, Fujita Y, Tan Y, Wang X, Hashimoto K (2020) Ingestion of Lactobacillus intestinalis and Lactobacillus reuteri causes depression- and anhedonia-like phenotypes in antibiotic-treated mice via the vagus nerve. J Neuroinflammation 17:241

    PubMed  PubMed Central  Google Scholar 

  53. Duman RS, Aghajanian GK (2011) Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72

    Google Scholar 

  54. Ohgi Y, Futamura T, Hashimoto K (2015) Glutamate signaling in synaptogenesis and NMDA receptors as potential therapeutic targets for psychiatric disorders. Curr Mol Med 15:206–221

    CAS  PubMed  Google Scholar 

  55. Yang C, Shirayama Y, Zhang JC, Ren Q, Hashimoto K (2015) Regional differences in brain-derived neurotrophic factor levels and dendritic spine density confer resilience to inescapable stress. Int J Neuropsychopharmacol 18:pyu121

    PubMed  PubMed Central  Google Scholar 

  56. Zhang J, Qu Y, Chang L, Pu Y, Hashimoto K (2019) (R)-ketamine rapidly ameliorates the decreased spine density in the medial prefrontal cortex and hippocampus of susceptible mice after chronic social defeat stress. Int J Neuropsychopharmacol 22:675–679

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shirayama Y, Yang C, Zhang JC, Ren Q, Yao W, Hashimoto K (2015) Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist. Eur Neuropsychopharmacol 25:2449–2458

    CAS  PubMed  Google Scholar 

  58. Martín-Hernández D, Caso JR, Javier Meana J, Callado LF, Madrigal JLM, García-Bueno B, Leza JC (2018) Intracellular inflammatory and antioxidant pathways in postmortem frontal cortex of subjects with major depression: effect of antidepressants. J Neuroinflammation 15:251

    PubMed  PubMed Central  Google Scholar 

  59. Lukic I, Mitic M, Djordjevic J, Tatalovic N, Bozovic N, Soldatovic I, Mihaljevic M, Pavlovic Z, Radojcic MB, Maric NP, Adzic M (2014) Lymphocyte levels of redox-sensitive transcription factors and antioxidative enzymes as indicators of pro-oxidative state in depressive patients. Neuropsychobiology 70:1–9

    CAS  PubMed  Google Scholar 

  60. Lin CH, Huang MW, Lin CH, Huang CH, Lane HY (2019) Altered mRNA expressions for N-methyl-d-aspartate receptor-related genes in WBC of patients with major depressive disorder. J Affect Disord 245:1119–1125

    CAS  PubMed  Google Scholar 

  61. Qiu LL, Pan W, Luo D, Zhang GF, Zhou ZQ, Sun XY, Yang JJ, Ji MH (2020) Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation 17:23

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants from AMED, Japan (to K.H., JP20dm0107119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto.

Ethics declarations

Conflict of interest

Dr. Hashimoto is an inventor on a filed patent application on “The use of R-ketamine in the treatment of psychiatric diseases” by Chiba University. Other authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Shan, J., Wang, S. et al. Rapid-acting and long-lasting antidepressant-like action of (R)-ketamine in Nrf2 knock-out mice: a role of TrkB signaling. Eur Arch Psychiatry Clin Neurosci 271, 439–446 (2021). https://doi.org/10.1007/s00406-020-01208-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-020-01208-w

Keywords

Navigation