Skip to main content

Advertisement

Log in

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Signalling Enhances Osteogenesis in UMR-106 Cell Line

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Presence of the pituitary adenylate cyclase-activating polypeptide (PACAP) signalling has been proved in various peripheral tissues. PACAP can activate protein kinase A (PKA) signalling via binding to pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1), vasoactive intestinal polypeptide receptor (VPAC) 1 or VPAC2 receptor. Since little is known about the role of this regulatory mechanism in bone formation, we aimed to investigate the effect of PACAP on osteogenesis of UMR-106 cells. PACAP 1-38 as an agonist and PACAP 6-38 as an antagonist of PAC1 were added to the culture medium. Surprisingly, both substances enhanced protein expressions of collagen type I, osterix and alkaline phosphatase, along with higher cell proliferation rate and an augmented mineralisation. Although expression of PKA was elevated, no alterations were detected in the expression, phosphorylation and nuclear presence of CREB, but increased nuclear appearance of Runx2, the key transcription factor of osteoblast differentiation, was shown. Both PACAPs increased the expressions of bone morphogenetic proteins (BMPs) 2, 4, 6, 7 and Smad1 proteins, as well as that of Sonic hedgehog, PATCH1 and Gli1. Data of our experiments indicate that activation of PACAP pathway enhances bone formation of UMR-106 cells and PKA, BMP and Hedgehog signalling pathways became activated. We also found that PACAP 6-38 did not act as an antagonist of PACAP signalling in UMR-106 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

BMP:

Bone morphogenetic protein

cAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

CREB:

cAMP response element-binding protein

DMEM:

Dulbecco’s modified Eagle’s medium

dNTP:

Deoxynucleotide triphosphate

ECM:

Extracellular matrix

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Foetal bovine serum

FGF:

Fibroblast growth factor

HH:

Hedgehog

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

hMSC:

Human mesenchymal stem cell

IHH:

Indian hedgehog

MAPK:

Mitogen-activated protein kinase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PAC1:

Pituitary adenylate cyclase-activating polypeptide type I receptor

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PBS:

Phosphate-buffered saline

PBST:

Phosphate-buffered saline supplemented with 1 % Tween 20

PLC:

Phospholipase C

PKA:

Protein kinase A

PKC:

Protein kinase C

PTHrP:

Parathyroid hormone-related peptide

RT-PCR:

Reverse transcription followed by polymerase chain reaction

Runx2:

Runt-related transcription factor 2

SHH:

Sonic hedgehog

TBE:

Tris-boric acid-EDTA

TGFβ:

Transforming growth factor-β

VEGF:

Vascular endothelial growth factor

VIP:

Vasoactive intestinal polypeptide

VPAC:

Vasoactive intestinal polypeptide receptor

References

  • Ago Y, Yoneyama M, Ishihama T, Kataoka S, Kawada K, Tanaka T et al (2011) Role of endogenous pituitary adenylate cyclase-activating polypeptide in adult hippocampal neurogenesis. Neuroscience 172:554–561

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi K, Takahashi M (2001) Pituitary adenylate cyclase-activating polypeptide enhances Ca(2+)-dependent neurotransmitter release from PC12 cells and cultured cerebellar granule cells without affecting intracellular Ca(2+) mobilization. Biochem Biophys Res Commun 286:646–651

    Article  PubMed  CAS  Google Scholar 

  • Bae IH, Jeong BC, Kook MS, Kim SH, Koh JT (2013) Evaluation of a thiolated chitosan scaffold for local delivery of BMP-2 for osteogenic differentiation and ectopic bone formation. Biomed Res Int 2013:878930

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bastida MF, Sheth R, Ros MA (2009) A BMP-Shh negative-feedback loop restricts Shh expression during limb development. Development 136:3779–3789

    Article  PubMed  CAS  Google Scholar 

  • Bei K, Du Z, Xiong Y, Liao J, Su B, Wu L (2012) BMP7 can promote osteogenic differentiation of human periosteal cells in vitro. Mol Biol Rep 39:8845–8851

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom AL, Hannibal J, Hindersson P, Fahrenkrug J (2003) Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur J Neurosci 18:2552–2562

    Article  PubMed  CAS  Google Scholar 

  • Borzsei R, Mark L, Tamas A, Bagoly T, Bay C, Csanaky K et al (2009) Presence of pituitary adenylate cyclase activating polypeptide-38 in human plasma and milk. Eur J Endocrinol 160:561–565

    Article  PubMed  CAS  Google Scholar 

  • Braas KM, May V, Harakall SA, Hardwick JC, Parsons RL (1998) Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. J Neurosci 18:9766–9779

    PubMed  CAS  Google Scholar 

  • Braas KM, Schutz KC, Bond JP, Vizzard MA, Girard BM, May V (2007) Microarray analyses of pituitary adenylate cyclase activating polypeptide (PACAP)-regulated gene targets in sympathetic neurons. Peptides 28:1856–1870

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA (2012) Noncanonical Hedgehog signaling. Vitam Horm 88:55–72

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Castorina A, Giunta S, Mazzone V, Cardile V, D’Agata V (2010) Effects of PACAP and VIP on hyperglycemia-induced proliferation in murine microvascular endothelial cells. Peptides 31:2276–2283

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drissi MH, Li X, Sheu TJ, Zuscik MJ, Schwarz EM, Puzas JE, Rosier RN et al (2003) Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes. J Cell Biochem 90:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Ehlen HW, Buelens LA, Vortkamp A (2006) Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today 78:267–279

    Article  PubMed  CAS  Google Scholar 

  • Falluel-Morel A, Aubert N, Vaudry D, Desfeux A, Allais A, Burel D et al (2008) Interactions of PACAP and ceramides in the control of granule cell apoptosis during cerebellar development. J Mol Neurosci 36:8–15

    Article  PubMed  CAS  Google Scholar 

  • Forrest SM, Ng KW, Findlay DM, Michelangeli VP, Livesey SA, Partridge NC et al (1985) Characterization of an osteoblast-like clonal cell line which responds to both parathyroid hormone and calcitonin. Calcif Tissue Int 37:51–56

    Article  PubMed  CAS  Google Scholar 

  • Franceschi RT, Xiao G (2003) Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88:446–454

    Article  PubMed  CAS  Google Scholar 

  • Gonkowski S, Całka J (2012) Changes in pituitary adenylate cyclase-activating Peptide 27-like immunoreactive nervous structures in the porcine descending colon during selected pathological processes. J Mol Neurosci 48(3):777–787

    Article  PubMed  CAS  Google Scholar 

  • Gourlet P, Vandermeers A, Vertongen P, Rathe J, De NP, Cnudde J et al (1997) Development of high affinity selective VIP1 receptor agonists. Peptides 18:1539–1545

    Article  PubMed  CAS  Google Scholar 

  • Han JB, Sang F, Chang JJ, Hua YQ, Shi WD, Tang LH et al (2013) Arsenic trioxide inhibits viability of pancreatic cancer stem cells in culture and in a xenograft model via binding to SHH-Gli. Onco Targets Ther 6:1129–1138

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hirotsu M, Setoguchi T, Sasaki H, Matsunoshita Y, Gao H, Nagao H et al (2010) Smoothened as a new therapeutic target for human osteosarcoma. Mol Cancer 12(9):5

    Article  CAS  Google Scholar 

  • Hodges RR, Rios JD, Vrouvlianis J, Ota I, Zoukhri D, Dartt DA (2006) Roles of protein kinase C, Ca2+, Pyk2, and c-Src in agonist activation of rat lacrimal gland p42/p44 MAPK. Invest Ophthalmol Vis Sci 47:3352–3359

    Article  PubMed  Google Scholar 

  • Hojo H, Ohba S, Yano F, Saito T, Ikeda T, Nakajima K et al (2012) Gli1 protein participates in Hedgehog-mediated specification of osteoblast lineage during endochondral ossification. J Biol Chem 287:17860–17869

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Holighaus Y, Mustafa T, Eiden LE (2011) PAC1hop, null and hip receptors mediate differential signaling through cyclic AMP and calcium leading to splice variant-specific gene induction in neural cells. Peptides 32:1647–1655

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Horvath G, Brubel R, Kovacs K, Reglodi D, Opper B, Ferencz A et al (2011) Effects of PACAP on oxidative stress-induced cell death in rat kidney and human hepatocyte cells. J Mol Neurosci 43:67–75

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Zhang S, Chen G, Lin C, Huang Z, Chen Y et al (2013) Expression of SHH signaling molecules in the developing human primary dentition. BMC Dev Biol 13:11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang KP, Huang FL (1991) Purification and analysis of protein kinase C isozymes. Methods Enzymol 200:241–252

    Article  PubMed  CAS  Google Scholar 

  • Inglott MA, Lerner EA, Pilowsky PM, Farnham MM (2012) Activation of PAC(1) and VPAC receptor subtypes elicits differential physiological responses from sympathetic preganglionic neurons in the anaesthetized rat. Br J Pharmacol 167:1089–1098

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • James AW, Leucht P, Levi B, Carre AL, Xu Y, Helms JA et al (2010) Sonic Hedgehog influences the balance of osteogenesis and adipogenesis in mouse adipose-derived stromal cells. Tissue Eng Part A 16:2605–2616

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jansen-Olesen I, Baun M, Amrutkar DV, Ramachandran R, Christophersen DV, Olesen J (2014) PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC1 receptor. Neuropeptides. doi:10.1016/j.npep.2014.01.004

    PubMed  Google Scholar 

  • Jiang Q, Du J, Yin X, Shan Z, Ma Y, Ma P et al (2013) Shh signaling, negatively regulated by BMP signaling, inhibits the osteo/dentinogenic differentiation potentials of mesenchymal stem cells from apical papilla. Mol Cell Biochem 383:85–93

    Article  PubMed  CAS  Google Scholar 

  • Jolivel V, Basille M, Aubert N, de Jouffrey S, Ancian P, Le Bigot JF et al (2009) Distribution and functional characterization of pituitary adenylate cyclase-activating polypeptide receptors in the brain of non-human primates. Neuroscience 160:434–451

    Article  PubMed  CAS  Google Scholar 

  • Jonason JH, Xiao G, Zhang M, Xing L, Chen D (2009) Post-translational regulation of Runx2 in bone and cartilage. J Dent Res 88:693–703

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jones KB, Mollano AV, Morcuende JA, Cooper RR, Saltzman CL (2004) Bone and brain: a review of neural, hormonal, and musculoskeletal connections. Iowa Orthop J 24:123–132

    PubMed Central  PubMed  Google Scholar 

  • Jozsa R, Hollosy T, Tamas A, Toth G, Lengvari I, Reglodi D (2005) Pituitary adenylate cyclase activating polypeptide plays a role in olfactory memory formation in chicken. Peptides 26:2344–2350

    Article  PubMed  CAS  Google Scholar 

  • Juhász T, Matta C, Katona E, Somogyi C, Takács R, Gergely P et al (2014) Pituitary adenylate cyclase activating polypeptide (PACAP) signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target. PLoS One 9(3):e91541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH et al (2013) Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis 5:13–31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kiuru M, Solomon J, Ghali B, van der Meulen M, Crystal RG, Hidaka C (2009) Transient overexpression of sonic hedgehog alters the architecture and mechanical properties of trabecular bone. J Bone Mineral Res 24:1598–1607

    Article  CAS  Google Scholar 

  • Kovacs CS, Chik CL, Li B, Karpinski E, Ho AK (1996) Pituitary adenylate cyclase-activating peptide stimulates cyclic AMP accumulation in UMR 106 osteoblast-like cells. J Endocrinol 149:287–295

    Article  PubMed  CAS  Google Scholar 

  • Lavery K, Swain P, Falb D, Aoui-Ismaili MH (2008) BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 283:20948–20958

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li YL, Xiao ZS (2007) Advances in Runx2 regulation and its isoforms. Med Hypotheses 68:169–175

    Article  PubMed  CAS  Google Scholar 

  • Lo KW, Kan HM, Ashe KM, Laurencin CT (2012) The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med 6:40–48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • MacDonald JF, Jackson MF, Beazely MA (2007) G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus. Biochim Biophys Acta 1768:941–951

    Article  PubMed  CAS  Google Scholar 

  • Marie PJ (2012) Fibroblast growth factor signaling controlling bone formation: an update. Gene 498:1–4

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Arakawa Y, Ohishi M, Yanaihara H, Iwanaga T, Kurokawa N (2008) Suppressive action of pituitary adenylate cyclase activating polypeptide (PACAP) on proliferation of immature mouse Leydig cell line TM3 cells. Biomed Res 29:321–330

    Article  PubMed  CAS  Google Scholar 

  • Matta C, Fodor J, Szijgyarto Z, Juhasz T, Gergely P, Csernoch L et al (2008) Cytosolic free Ca2+ concentration exhibits a characteristic temporal pattern during in vitro cartilage differentiation: a possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells. Cell Calcium 44:310–323

    Article  PubMed  CAS  Google Scholar 

  • Midura RJ, McQuillan DJ, Benham KJ, Fisher LW, Hascall VC (1990) A rat osteogenic cell line (UMR 106-01) synthesizes a highly sulfated form of bone sialoprotein. J Biol Chem 265:5285–5291

    PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L et al (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Sakakibara A, Kitayama S, Kumagai K, Tanne K, Dohi T (2002) Pituitary adenylate cyclase-activating polypeptide induces a sustained increase in intracellular free Ca(2+) concentration and catechol amine release by activating Ca(2+) influx via receptor-stimulated Ca(2+) entry, independent of store-operated Ca(2+) channels, and voltage-dependent Ca(2+) channels in bovine adrenal medullary chromaffin cells. J Pharmacol Exp Ther 302:972–982

    Article  PubMed  CAS  Google Scholar 

  • Nagata A, Tanaka T, Minezawa A, Poyurovsky M, Mayama T, Suzuki S et al (2009) cAMP activation by PACAP/VIP stimulates IL-6 release and inhibits osteoblastic differentiation through VPAC2 receptor in osteoblastic MC3T3 cells. J Cell Physiol 221:75–83

    Article  PubMed  CAS  Google Scholar 

  • Nakamachi T, Nakamura K, Oshida K, Kagami N, Mori H, Watanabe J et al (2011) Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates proliferation of reactive astrocytes in vitro. J Mol Neurosci 43:16–21

    Article  PubMed  CAS  Google Scholar 

  • Niewiadomski P, Zhujiang A, Youssef M, Waschek JA (2013) Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA. Cell Signal 25:2222–2230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nishimoto M, Furuta A, Aoki S, Kudo Y, Miyakawa H, Wada K (2007) PACAP/PAC1 autocrine system promotes proliferation and astrogenesis in neural progenitor cells. Glia 55:317–327

    Article  PubMed  Google Scholar 

  • Ochiai T, Shibukawa Y, Nagayama M, Mundy C, Yasuda T, Okabe T et al (2010) Indian hedgehog roles in post-natal TMJ development and organization. J Dent Res 89:349–354

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ohta S, Gregg C, Weiss S (2006) Pituitary adenylate cyclase-activating polypeptide regulates forebrain neural stem cells and neurogenesis in vitro and in vivo. J Neurosci Res 84:1177–1186

    Article  PubMed  CAS  Google Scholar 

  • Ok CY, Singh RR, Vega F (2012) Aberrant activation of the hedgehog signaling pathway in malignant hematological neoplasms. Am J Pathol 180:2–11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Osipenko ON, Barrie AP, Allen JM, Gurney AM (2000) Pituitary adenylyl cyclase-activating peptide activates multiple intracellular signaling pathways to regulate ion channels in PC12 cells. J Biol Chem 275:16626–16631

    Article  PubMed  CAS  Google Scholar 

  • Pan A, Chang L, Nguyen A, James AW (2013) A review of hedgehog signaling in cranial bone development. Front Physiol 4:61

    Article  PubMed Central  PubMed  Google Scholar 

  • Payet MD, Bilodeau L, Breault L, Fournier A, Yon L, Vaudry H et al (2003) PAC1 receptor activation by PACAP-38 mediates Ca2+ release from a cAMP-dependent pool in human fetal adrenal gland chromaffin cells. J Biol Chem 278:1663–1670

    Article  PubMed  CAS  Google Scholar 

  • Perrier-Groult E, Pasdeloup M, Malbouyres M, Galera P, Mallein-Gerin F (2013) Control of collagen production in mouse chondrocytes by using a combination of bone morphogenetic protein-2 and small interfering RNA targeting Col1a1 for hydrogel-based tissue-engineered cartilage. Tissue Eng Part C Methods 19:652–664

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Persson E, Lerner UH (2005) The neuropeptide VIP potentiates IL-6 production induced by proinflammatory osteotropic cytokines in calvarial osteoblasts and the osteoblastic cell line MC3T3-E1. Biochem Biophys Res Commun 335:705–711

    Article  PubMed  CAS  Google Scholar 

  • Persson E, Lerner UH (2011) The neuropeptide VIP regulates the expression of osteoclastogenic factors in osteoblasts. J Cell Biochem 112:3732–3741

    Article  PubMed  CAS  Google Scholar 

  • Pirone A, Baoan D, Piano I, Santina LD, Baglini A, Lenzi C (2011) Pituitary adenylate cyclase-activating peptide (PACAP) immunoreactivity distribution in the small intestine of the adult New Hampshire chicken. Acta Histochem 113:477–483

    Article  PubMed  CAS  Google Scholar 

  • Regard JB, Malhotra D, Gvozdenovic-Jeremic J, Josey M, Chen M, Weinstein LS et al (2013) Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat Med 19:1505–1512

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reglodi D, Borzsei R, Bagoly T, Boronkai A, Racz B, Tamas A et al (2008) Agonistic behavior of PACAP6-38 on sensory nerve terminals and cytotrophoblast cells. J Mol Neurosci 36:270–278

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, Gyarmati J, Ertl T, Borzsei R, Bodis J, Tamas A et al (2010) Alterations of pituitary adenylate cyclase-activating polypeptide-like immunoreactivity in the human plasma during pregnancy and after birth. J Endocrinol Investig 33:443–445

    Article  CAS  Google Scholar 

  • Reglodi D, Tamas A, Koppan M, Szogyi D, Welke L (2012) Role of PACAP in female fertility and reproduction at gonadal level—recent advances. Front Endocrinol (Lausanne) 11(3):155

    Google Scholar 

  • Sanchez A, Chiriva-Internati M, Grammas P (2008) Transduction of PACAP38 protects primary cortical neurons from neurotoxic injury. Neurosci Lett 448:52–55

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Seeliger S, Buddenkotte J, Schmidt-Choudhury A, Rosignoli C, Shpacovitch V, von Arnim U et al (2010) Pituitary adenylate cyclase activating polypeptide: an important vascular regulator in human skin in vivo. Am J Pathol 177:2563–2575

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shioda S, Legradi G, Leung WC, Nakajo S, Nakaya K, Arimura A (1994) Localization of pituitary adenylate cyclase-activating polypeptide and its messenger ribonucleic acid in the rat testis by light and electron microscopic immunocytochemistry and in situ hybridization. Endocrinology 135:818–825

    PubMed  CAS  Google Scholar 

  • Shioda S, Ohtaki H, Nakamachi T, Dohi K, Watanabe J, Nakajo S et al (2006) Pleiotropic functions of PACAP in the CNS: neuroprotection and neurodevelopment. Ann N Y Acad Sci 1070:550–560

    Article  PubMed  CAS  Google Scholar 

  • Shpakov AO, Derkach KV, Chistiakova OV, Bondareva VM (2011) Functional state of adenylate cyclase signaling system in testis and ovary of fasted rats. Zh Evol Biokhim Fiziol 47:40–48

    PubMed  CAS  Google Scholar 

  • Siddappa R, Martens A, Doorn J, Leusink A, Olivo C, Licht R et al (2008) cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci U S A 105:7281–7286

    Article  PubMed Central  PubMed  Google Scholar 

  • St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Strange-Vognsen HH, Arnbjerg J, Hannibal J (1997) Immunocytochemical demonstration of pituitary adenylate cyclase activating polypeptide (PACAP) in the porcine epiphyseal cartilage canals. Neuropeptides 31:137–141

    Article  PubMed  CAS  Google Scholar 

  • Tamas A, Reglodi D, Farkas O, Kovesdi E, Pal J, Povlishock JT et al (2012) Effect of PACAP in Central and Peripheral Nerve Injuries. Int J Mol Sci 13:8430–8448

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Toriyama M, Mizuno N, Fukami T, Iguchi T, Toriyama M, Tago K et al (2012) Phosphorylation of doublecortin by protein kinase A orchestrates microtubule and actin dynamics to promote neuronal progenitor cell migration. J Biol Chem 287:12691–12702

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tu X, Joeng KS, Long F (2012) Indian hedgehog requires additional effectors besides Runx2 to induce osteoblast differentiation. Dev Biol 362:76–82

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vandermeers A, Vandenborre S, Hou X, De NP, Robberecht P, Vandermeers-Piret MC et al (1992) Antagonistic properties are shifted back to agonistic properties by further N-terminal shortening of pituitary adenylate-cyclase-activating peptides in human neuroblastoma NB-OK-1 cell membranes. Eur J Biochem 208:815–819

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  PubMed  CAS  Google Scholar 

  • Vazin T, Ashton RS, Conway A, Rode NA, Lee SM, Bravo V et al (2014) The effect of multivalent Sonic hedgehog on differentiation of human embryonic stem cells into dopaminergic and GABAergic neurons. Biomaterials 35(3):941–948

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Nakamachi T, Endo K, Seki T, Ohtaki H, Tsuchikawa D et al (2013) PACAP attenuates NMDA-induced retinal damage in association with modulation of the microglia/macrophage status into an acquired deactivation subtype. J Mol Neurosci 51(2):493–502

    Article  PubMed  CAS  Google Scholar 

  • Walker CS, Sundrum T, Hay DL (2013) PACAP receptor pharmacology and agonist bias: Analysis in primary neurons and glia from the trigeminal ganglia and transfected cells. Br J Pharmacol 171:1521–1533

    Article  CAS  Google Scholar 

  • Wang L, Park P, La MF, Than K, Rahman S, Lin CY (2013) Bone formation induced by BMP-2 in human osteosarcoma cells. Int J Oncol 43:1095–1102

    PubMed Central  PubMed  CAS  Google Scholar 

  • Waschek JA, Cicco-Bloom EM, Lelievre V, Zhou X, Hu Z (2000) PACAP action in nervous system development, regeneration, and neuroblastoma cell proliferation. Ann NY Acad Sci 921:129–136

    Article  PubMed  CAS  Google Scholar 

  • Waschek JA, Cicco-Bloom E, Nicot A, Lelievre V (2006) Hedgehog signaling: new targets for GPCRs coupled to cAMP and protein kinase A. Ann NY Acad Sci 1070:120–128

    Article  PubMed  CAS  Google Scholar 

  • Watanabe J, Nakamachi T, Matsuno R, Hayashi D, Nakamura M, Kikuyama S et al (2007) Localization, characterization and function of pituitary adenylate cyclase-activating polypeptide during brain development. Peptides 28:1713–1719

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Hou T, Luo F, Xing J, He Q, Jin H et al (2013) Vascular endothelial growth factor and physiological compressive loading synergistically promote bone formation of tissue-engineered bone. Tissue Eng Part A 19:2486–2494

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Zhou X, Pan Z, Ma J, Waschek JA, DiCicco-Bloom E (2013) Pro- and anti-mitogenic actions of pituitary adenylate cyclase-activating polypeptide in developing cerebral cortex: potential mediation by developmental switch of PAC1 receptor mRNA isoforms. J Neurosci 33(9):3865–3878

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yan XZ, Yang W, Yang F, Kersten-Niessen M, Jansen JA, Both SK (2014) Effects of continuous passaging on mineralization of MC3T3-E1 cells with improved osteogenic culture protocol tissue. Eng Part C Methods 20(3):198–204

    Article  CAS  Google Scholar 

  • Yang J, Shi QD, Song TB, Feng GF, Zang WJ, Zong CH et al (2013) Vasoactive intestinal peptide increases VEGF expression to promote proliferation of brain vascular endothelial cells via the cAMP/PKA pathway after ischemic insult in vitro. Peptides 42:105–111

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Edwards JR, Ko SY, Dong S, Liu H, Oyajobi BO et al (2011) Transcriptional regulation of BMP2 expression by the PTH-CREB signaling pathway in osteoblasts. PLoS One 6:e20780

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu F, Friedman MS, Luo W, Woolf P, Hankenson KD (2012) The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J Cell Physiol 227:2677–2685

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zouani OF, Rami L, Lei Y, Durrieu MC (2013) Insights into the osteoblast precursor differentiation towards mature osteoblasts induced by continuous BMP-2 signaling. Biol Open 2:872–881

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for Mrs. Krisztina Bíró and Mrs. Ella Kovács for excellent technical assistance during the study. This work was supported by grants from Akira Arimura Foundation Research Grant, the Hungarian Science Research Fund (OTKA CNK80709 and OTKA K 104984), Bolyai Scholarship and the Hungarian Ministry of Education (TÁMOP 4.2.1.B-10/2/KONV-2010-002, PTE-MTA “Lendület” Program) and from the New Széchenyi Plan (TÁMOP-4.2.2.A-11/1/KONV-2012-0053, TÁMOP-4.2.2.A-11/1/KONV-2012-0024). The project is co-financed by the European Union and the European Social Fund. This research and T.J. was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program”. C.M. is supported by a Mecenatura grant (DEOEC Mec-9/2011) from the Medical and Health Science Center, University of Debrecen, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róza Zákány.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juhász, T., Matta, C., Katona, É. et al. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Signalling Enhances Osteogenesis in UMR-106 Cell Line. J Mol Neurosci 54, 555–573 (2014). https://doi.org/10.1007/s12031-014-0389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0389-1

Keywords

Navigation