Skip to main content
Log in

The direct impact of pegvisomant on osteoblast functions and bone development

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Acromegaly is a chronic disease characterized by growth hormone (GH) hypersecretion, usually caused by a pituitary adenoma, resulting in elevated circulating levels of insulin-like growth factor type I (IGF-I). Pegvisomant (PEG), the GH-receptor (GHR) antagonist, is used in treating acromegaly to normalize IGF-I hypersecretion. Exposure to increased levels of GH and IGF-I can cause profound alterations in bone structure that are not completely reverted by treatment of GH hypersecretion. Indeed, there is evidence that drugs used for the treatment of acromegaly might induce direct effects on skeletal health regardless of biochemical control of acromegaly.

Methods

We investigated, for the first time, the effect of PEG on cell proliferation, differentiation, and mineralization in the osteoblast cell lines MC3T3-E1 and hFOB 1.19 and its potential impact on bone development in zebrafish larvae.

Results

We observed that PEG did not affect osteoblast proliferation, apoptosis, alkaline phosphatase (ALP) activity, and mineralization. After PEG treatment, the analysis of genes related to osteoblast differentiation showed no difference in Alp, Runx2, or Opg mRNA levels in MC3T3-E1 cells. GH significantly decreased cell apoptosis (− 30 ± 11%, p < 0.001) and increased STAT3 phosphorylation; these effects were suppressed by the addition of PEG in MC3T3-E1 cells. GH and PEG did not affect Igf-I, Igfbp2, and Igfbp4 mRNA levels in MC3T3-E1 cells. Finally, PEG did not affect bone development in zebrafish larvae at 5 days post-fertilization.

Conclusion

This study provides a first evidence of the impact of PEG on osteoblast functions both in vitro and in vivo. These findings may have clinically relevant implications for the management of skeletal health in subjects with acromegaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request in the Zenodo repository.

References

  1. Mazziotti G, Lania AGA, Canalis E (2019) Bone disorders associated with acromegaly: mechanisms and treatment. Eur J Endocrinol 181:R45–R56. https://doi.org/10.1530/EJE-19-0184

    Article  PubMed  CAS  Google Scholar 

  2. Cellini M, Biamonte E, Mazza M et al (2021) Vertebral fractures associated with spinal sagittal imbalance and quality of life in acromegaly: a radiographic study with EOS 2D/3D technology. Neuroendocrinology 111:775–785. https://doi.org/10.1159/000511811

    Article  PubMed  CAS  Google Scholar 

  3. Szulc P (2020) Biochemical bone turnover markers in hormonal disorders in adults: a narrative review. J Endocrinol Invest 43:1409–1427. https://doi.org/10.1007/s40618-020-01269-7

    Article  PubMed  CAS  Google Scholar 

  4. Belaya Z, Grebennikova T, Melnichenko G et al (2018) Effects of active acromegaly on bone mRNA and microRNA expression patterns. Eur J Endocrinol 178:353–364. https://doi.org/10.1530/EJE-17-0772

    Article  PubMed  CAS  Google Scholar 

  5. Valenti MT, Mottes M, Cheri S et al (2018) Runx2 overexpression compromises bone quality in acromegalic patients. Endocr Relat Cancer 25:269–277. https://doi.org/10.1530/ERC-17-0523

    Article  PubMed  CAS  Google Scholar 

  6. Dalle Carbonare L, Micheletti V, Cosaro E et al (2018) Bone histomorphometry in acromegaly patients with fragility vertebral fractures. Pituitary 21:56–64. https://doi.org/10.1007/s11102-017-0847-1

    Article  PubMed  CAS  Google Scholar 

  7. Kuker AP, Agarwal S, Shane E et al (2023) Persistent deficits in bone quality in treated acromegaly: evidence from assessments of microstructure. J Endocr Soc 7:1. https://doi.org/10.1210/jendso/bvad121

    Article  CAS  Google Scholar 

  8. Chiloiro S, Giampietro A, Frara S et al (2020) Effects of pegvisomant and pasireotide LAR on vertebral fractures in acromegaly resistant to first-generation SRLs. J Clin Endocrinol Metab 105:2. https://doi.org/10.1210/clinem/dgz054

    Article  Google Scholar 

  9. Kreutzer J, Vance ML, Lopes MBS, Laws ER (2001) Surgical management of GH-secreting pituitary adenomas: An outcome study using modern remission criteria. J Clin Endocrinol Metab 86:4072–4077. https://doi.org/10.1210/jcem.86.9.7819

    Article  PubMed  CAS  Google Scholar 

  10. Pirchio R, Auriemma RS, Montini ME et al (2023) Control of acromegaly in more than 90% of patients after 10 years of pegvisomant therapy: an European referral centre real-life experience. J Endocrinol Invest 46:1. https://doi.org/10.1007/s40618-022-01980-7

    Article  CAS  Google Scholar 

  11. Grottoli S, Bianchi A, Bogazzi F et al (2022) Are there country-specific differences in the use of pegvisomant for acromegaly in clinical practice? An analysis from ACROSTUDY. J Endocrinol Invest 45:1. https://doi.org/10.1007/s40618-022-01789-4

    Article  CAS  Google Scholar 

  12. Fleseriu M, Führer-Sakel D, van der Lely AJ et al (2021) More than a decade of real-world experience of pegvisomant for acromegaly: ACROSTUDY. Eur J Endocrinol 185:1. https://doi.org/10.1530/EJE-21-0239

    Article  Google Scholar 

  13. Kohn DT, Kopchick JJ (2002) Growth hormone receptor antagonists. Minerva Endocrinol 27:287–298

    PubMed  CAS  Google Scholar 

  14. Cuny T, Zeiller C, Bidlingmaier M et al (2016) In vitro impact of pegvisomant on growth hormone-secreting pituitary adenoma cells. Endocr Relat Cancer 23:509–519. https://doi.org/10.1530/ERC-16-0140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mazziotti G, Lania AG, Canalis E (2022) Skeletal disorders associated with the growth hormone–insulin-like growth factor 1 axis. Nat Rev Endocrinol 18:353–365

    Article  PubMed  CAS  Google Scholar 

  16. Nilsson A, Swolin D, Enerback S, Ohlsson C (1995) Expression of functional growth hormone receptors in cultured human osteoblast-like cells. J Clin Endocrinol Metab 80:3483–3488. https://doi.org/10.1210/jcem.80.12.8530587

    Article  PubMed  CAS  Google Scholar 

  17. Barnardt R, Ng KW, Martin TJ, Waters MJ (1991) Growth hormone (Gh) receptors in clonal osteoblast-like cells mediate a mitogenic response to gh. Endocrinology 128:1459–1464. https://doi.org/10.1210/endo-128-3-1459

    Article  Google Scholar 

  18. Herrington J, Smit LS, Schwartz J, Carter-Su C (2000) The role of STAT proteins in growth hormone signaling. Oncogene 19:2585–2597

    Article  PubMed  CAS  Google Scholar 

  19. Li J (2013) JAK-STAT and bone metabolism. JAKSTAT 2:e23930. https://doi.org/10.4161/jkst.23930

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shen X, Wu C, Lei M et al (2021) Anti-tumor activity of a novel proteasome inhibitor D395 against multiple myeloma and its lower cardiotoxicity compared with carfilzomib. Cell Death Dis 12:1. https://doi.org/10.1038/s41419-021-03701-z

    Article  CAS  Google Scholar 

  21. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84. https://doi.org/10.1016/j.ab.2004.02.002

    Article  PubMed  CAS  Google Scholar 

  22. Mrak E, Villa I, Lanzi R et al (2007) Growth hormone stimulates osteoprotegerin expression and secretion in human osteoblast-like cells. J Endocrinol 192:639–645. https://doi.org/10.1677/joe.1.07073

    Article  PubMed  CAS  Google Scholar 

  23. Du Jun S, Frenkel V, Zohar Y, Kindschi G (2001) Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 238:239–246. https://doi.org/10.1006/dbio.2001.0390

    Article  CAS  Google Scholar 

  24. Cianferotti L, Cipriani C, Corbetta S et al (2023) Bone quality in endocrine diseases: determinants and clinical relevance. J Endocrinol Invest 46:1283–1304. https://doi.org/10.1007/s40618-023-02056-w

    Article  PubMed  CAS  Google Scholar 

  25. Mazziotti G, Maffezzoni F, Frara S, Giustina A (2017) Acromegalic osteopathy. Pituitary 20:63–69

    Article  PubMed  CAS  Google Scholar 

  26. Mazziotti G, Biagioli E, Maffezzoni F et al (2015) Bone turnover, bone mineral density, and fracture risk in acromegaly: A meta-analysis. J Clin Endocrinol Metab 100:384–394

    Article  PubMed  CAS  Google Scholar 

  27. Fairfield WP, Sesmilo G, Katznelson L et al (2002) Effects of a growth hormone receptor antagonist on bone markers in acromegaly. Clin Endocrinol (Oxf) 57:385–390. https://doi.org/10.1046/j.1365-2265.2002.01624.x

    Article  PubMed  CAS  Google Scholar 

  28. Parkinson C, Kassem M, Heickendorff L et al (2003) Pegvisomant-induced serum insulin-like growth factor-I normalization in patients with acromegaly returns elevated markers of bone turnover to normal. J Clin Endocrinol Metab 88:5650–5655. https://doi.org/10.1210/jc.2003-030772

    Article  PubMed  CAS  Google Scholar 

  29. Chiloiro S, Mazziotti G, Giampietro A et al (2018) Effects of pegvisomant and somatostatin receptor ligands on incidence of vertebral fractures in patients with acromegaly. Pituitary 21:302–308. https://doi.org/10.1007/s11102-018-0873-7

    Article  PubMed  CAS  Google Scholar 

  30. DiGirolamo DJ, Mukherjee A, Fulzele K et al (2007) Mode of growth hormone action in osteoblasts. J Biol Chem 282:31666–31674. https://doi.org/10.1074/jbc.M705219200

    Article  PubMed  CAS  Google Scholar 

  31. Kaseb AO, Haque A, Vishwamitra D et al (2022) Blockade of growth hormone receptor signaling by using pegvisomant: A functional therapeutic strategy in hepatocellular carcinoma. Front Oncol 12:1. https://doi.org/10.3389/fonc.2022.986305

    Article  CAS  Google Scholar 

  32. Neggers SJCMM, Muhammad A, Van Der Lely AJ (2016) Pegvisomant treatment in acromegaly. Neuroendocrinology 103:59–65. https://doi.org/10.1159/000381644

    Article  PubMed  CAS  Google Scholar 

  33. Canalis E, Centrella M, Burch W, McCarthy TL (1989) Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest 83:1. https://doi.org/10.1172/JCI113885

    Article  Google Scholar 

  34. Vitali E, Palagano E, Schiavone ML et al (2022) Direct effects of octreotide on osteoblast cell proliferation and function. J Endocrinol Invest 45:1. https://doi.org/10.1007/s40618-022-01740-7

    Article  CAS  Google Scholar 

Download references

Funding

The present study was supported by an investigator-sponsored research (ISR) grant, to Humanitas from Pfizer Srl. Pfizer Srl had no role in the study design, data analysis, and results interpretation of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mazziotti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors that required approval by the Ethics Committee.

Informed consent

For this type of study, formal consent was not necessary.

Consent for publication

This work has been approved for publication by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitali, E., Grasso, A., Schiavone, M.L. et al. The direct impact of pegvisomant on osteoblast functions and bone development. J Endocrinol Invest (2023). https://doi.org/10.1007/s40618-023-02281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40618-023-02281-3

Keywords

Navigation