Skip to main content

Advertisement

Log in

Prospective Observational Study of Volatile Sedation with Sevoflurane After Aneurysmal Subarachnoid Hemorrhage Using the Sedaconda Anesthetic Conserving Device

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Volatile sedation is still used with caution in patients with acute brain injury because of safety concerns. We analyzed the effects of sevoflurane sedation on systemic and cerebral parameters measured by multimodal neuromonitoring in patients after aneurysmal subarachnoid hemorrhage (aSAH) with normal baseline intracranial pressure (ICP).

Methods

In this prospective observational study, we analyzed a 12-h period before and after the switch from intravenous to volatile sedation with sevoflurane using the Sedaconda Anesthetic Conserving Device with a target Richmond Agitation Sedation Scale score of − 5 to − 4. ICP, cerebral perfusion pressure (CPP), brain tissue oxygenation (PBrO2), metabolic values of cerebral microdialysis, systemic cardiopulmonary parameters, and the administered drugs before and after the sedation switch were analyzed.

Results

We included 19 patients with a median age of 61 years (range 46–78 years), 74% of whom presented with World Federation of Neurosurgical Societies grade 4 or 5 aSAH. We observed no significant changes in the mean ICP (9.3 ± 4.2 vs. 9.7 ± 4.2 mm Hg), PBrO2 (31.0 ± 13.2 vs. 32.2 ± 12.4 mm Hg), cerebral lactate (5.0 ± 2.2 vs. 5.0 ± 1.9 mmol/L), pyruvate (136.6 ± 55.9 vs. 134.1 ± 53.6 µmol/L), and lactate/pyruvate ratio (37.4 ± 8.7 vs. 39.8 ± 9.2) after the sedation switch to sevoflurane. We found a significant decrease in mean arterial pressure (MAP) (88.6 ± 7.6 vs. 86.3 ± 5.8 mm Hg) and CPP (78.8 ± 8.5 vs. 76.6 ± 6.6 mm Hg) after the initiation of sevoflurane, but the decrease was still within the physiological range requiring no additional hemodynamic support.

Conclusions

Sevoflurane appears to be a feasible alternative to intravenous sedation in patients with aSAH without intracranial hypertension, as our study did not show negative effects on ICP, cerebral oxygenation, or brain metabolism. Nevertheless, the risk of a decrease of MAP leading to a consecutive CPP decrease should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Etminan N, Chang HS, Hackenberg K, et al. worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol. 2019;76:588–97. https://doi.org/10.1001/jamaneurol.2019.0006.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mayer SA, Kreiter KT, Copeland D, et al. Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology. 2002;59:1750–8. https://doi.org/10.1212/01.wnl.0000035748.91128.c2.

    Article  CAS  PubMed  Google Scholar 

  3. Lahiri S, Mayer SA, Fink ME, et al. Mechanical ventilation for acute stroke: a multi-state population-based study. Neurocrit Care. 2015;23:28–32. https://doi.org/10.1007/s12028-014-0082-9.

    Article  PubMed  Google Scholar 

  4. Oddo M, Crippa IA, Mehta S, et al. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20(1):128. https://doi.org/10.1186/s13054-016-1294-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Charpentier C, Audibert G, Guillemin F, et al. Multivariate analysis of predictors of cerebral vasospasm occurrence after aneurysmal subarachnoid hemorrhage. Stroke. 1999;30:1402–8. https://doi.org/10.1161/01.str.30.7.1402.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Tamimi YZ, Orsi NM, Quinn AC, Homer-Vanniasinkam S, Ross SA. A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology. World Neurosurg. 2010;73:654–67. https://doi.org/10.1016/j.wneu.2010.02.005.

    Article  PubMed  Google Scholar 

  7. Skoglund K, Enblad P, Marklund N. Monitoring and sedation differences in the management of severe head injury and subarachnoid hemorrhage among neurocritical care centers. J Neurosci Nurs. 2013;45:360–8.

    Article  PubMed  Google Scholar 

  8. Martin J, Heymann A, Basell K, et al. Evidence and consensus-based German guidelines for the management of analgesia, sedation and delirium in intensive care–short version. Ger Med Sci. 2010. https://doi.org/10.3205/000091.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hernandez-Duran S, Salfelder C, Schaeper J, et al. Mechanical ventilation, sedation and neuromonitoring of patients with aneurysmal subarachnoid hemorrhage in Germany: results of a nationwide survey. Neurocrit Care. 2021;34:236–47. https://doi.org/10.1007/s12028-020-01029-8.

    Article  PubMed  Google Scholar 

  10. Devlin JW, Roberts RJ. Pharmacology of commonly used analgesics and sedatives in the ICU: benzodiazepines, propofol, and opioids. Anesthesiol Clin. 2011;29:567–85. https://doi.org/10.1016/j.ccc.2009.03.003.

    Article  CAS  PubMed  Google Scholar 

  11. Oddo M, Crippa IA, Mehta S, et al. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20:128. https://doi.org/10.1186/s13054-016-1294-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Spencer EM, Willatts SM. Isoflurane for prolonged sedation in the intensive care unit: efficacy and safety. Intensive Care Med. 1992;18:415–21. https://doi.org/10.1007/BF01694344.

    Article  CAS  PubMed  Google Scholar 

  13. Preckel B, Bolten J. Pharmacology of modern volatile anaesthetics. Best Pract Res Clin Anaesthesiol. 2005;19:331–48. https://doi.org/10.1016/j.bpa.2005.01.003.

    Article  CAS  PubMed  Google Scholar 

  14. Villa F, Iacca C, Molinari AF, et al. Inhalation versus endovenous sedation in subarachnoid hemorrhage patients: effects on regional cerebral blood flow. Crit Care Med. 2012;40:2797–804. https://doi.org/10.1097/CCM.0b013e31825b8bc6.

    Article  PubMed  Google Scholar 

  15. Oshima T, Karasawa F, Okazaki Y, Wada H, Satoh T. Effects of sevoflurane on cerebral blood flow and cerebral metabolic rate of oxygen in human beings: a comparison with isoflurane. Eur J Anaesthesiol. 2003;20:543–7. https://doi.org/10.1017/s0265021503000863.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao P, Peng L, Li L, Xu X, Zuo Z. Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology. 2007;107:963–70. https://doi.org/10.1097/01.anes.0000291447.21046.4d.

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Traystman RJ, Murphy SJ. Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol. 2008;8:104–10. https://doi.org/10.1016/j.coph.2007.09.005.

    Article  CAS  PubMed  Google Scholar 

  18. Neag MA, Mitre AO, Catinean A, Mitre CI. An overview on the mechanisms of neuroprotection and neurotoxicity of isoflurane and sevoflurane in experimental studies. Brain Res Bull. 2020;165:281–9. https://doi.org/10.1016/j.brainresbull.2020.10.011.

    Article  CAS  PubMed  Google Scholar 

  19. Kitano H, Kirsch JR, Hurn PD, Murphy SJ. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab. 2007;27:1108–28. https://doi.org/10.1038/sj.jcbfm.9600410.

    Article  CAS  PubMed  Google Scholar 

  20. Athiraman U, Zipfel GJ. Role of anesthetics and their adjuvants in neurovascular protection in secondary brain injury after aneurysmal subarachnoid hemorrhage. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22126550.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Athiraman U, Dhar R, Jayaraman K, et al. Conditioning effect of inhalational anesthetics on delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2021;88:394–401. https://doi.org/10.1093/neuros/nyaa356.

    Article  PubMed  Google Scholar 

  22. Mutoh T, Mutoh T, Sasaki K, et al. Isoflurane postconditioning with cardiac support promotes recovery from early brain injury in mice after severe subarachnoid hemorrhage. Life Sci. 2016;153:35–40. https://doi.org/10.1016/j.lfs.2016.04.020.

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Jayaraman K, Giri T, Zipfel GJ, Athiraman U. Role of SIRT1 in isoflurane conditioning-induced neurovascular protection against delayed cerebral ischemia secondary to subarachnoid hemorrhage. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22084291.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Athiraman U, Liu M, Jayaraman K, Yuan J, Mehla J, Zipfel GJ. Anesthetic and subanesthetic doses of isoflurane conditioning provides strong protection against delayed cerebral ischemia in a mouse model of subarachnoid hemorrhage. Brain Res. 2021;1750:147169. https://doi.org/10.1016/j.brainres.2020.147169.

    Article  CAS  PubMed  Google Scholar 

  25. Athiraman U, Jayaraman K, Liu M, Giri T, Yuan J, Zipfel GJ. Role of endothelial nitric oxide synthase in isoflurane conditioning-induced neurovascular protection in subarachnoid hemorrhage. J Am Heart Assoc. 2020;9:e017477. https://doi.org/10.1161/JAHA.120.017477.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bhagat H, Sharma T, Mahajan S, et al. Intravenous versus inhalational anesthesia trial for outcome following intracranial aneurysm surgery: a prospective randomized controlled study. Surg Neurol Int. 2021;12:300. https://doi.org/10.25259/SNI_342_2021.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Athiraman U, Lele AV, Karanikolas M, et al. Inhalational versus intravenous anesthetic conditioning for subarachnoid hemorrhage-induced delayed cerebral ischemia. Stroke. 2022;53:904–12. https://doi.org/10.1161/STROKEAHA.121.035075.

    Article  CAS  PubMed  Google Scholar 

  28. Athiraman U, Aum D, Vellimana AK, et al. Evidence for a conditioning effect of inhalational anesthetics on angiographic vasospasm after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2019. https://doi.org/10.3171/2019.3.JNS183512.

    Article  PubMed  Google Scholar 

  29. Farrell R, Oomen G, Carey P. A technical review of the history, development and performance of the anaesthetic conserving device “AnaConDa” for delivering volatile anaesthetic in intensive and post-operative critical care. J Clin Monit Comput. 2018;32:595–604. https://doi.org/10.1007/s10877-017-0097-9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Herzog-Niescery J, Seipp HM, Weber TP, Bellgardt M. Inhaled anesthetic agent sedation in the ICU and trace gas concentrations: a review. J Clin Monit Comput. 2018;32:667–75. https://doi.org/10.1007/s10877-017-0055-6.

    Article  PubMed  Google Scholar 

  31. Gonzalez-Rodriguez R, Munoz Martinez A, Galan Serrano J, Moral Garcia MV. Health worker exposure risk during inhalation sedation with sevoflurane using the (AnaConDa(R)) anaesthetic conserving device. Rev Esp Anestesiol Reanim. 2014;61:133–9. https://doi.org/10.1016/j.redar.2013.11.011.

    Article  CAS  PubMed  Google Scholar 

  32. Gaya da Costa M, Kalmar AF, Struys MMRF. Inhaled anesthetics: environmental role, occupational risk, and clinical use. J Clin Med. 2021;10(6):1306. https://doi.org/10.3390/jcm10061306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matta BF, Mayberg TS, Lam AM. Direct cerebrovasodilatory effects of halothane, isoflurane, and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology 1995;83:980–5; discussion 27A https://doi.org/10.1097/00000542-199511000-00011.

  34. Matta BF, Heath KJ, Tipping K, Summors AC. Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology. 1999;91:677–80. https://doi.org/10.1097/00000542-199909000-00019.

    Article  CAS  PubMed  Google Scholar 

  35. Kadoi Y, Kawauchi CH, Ide M, Saito S, Mizutani A. Differential increases in blood flow velocity in the middle cerebral artery after tourniquet deflation during sevoflurane, isoflurane or propofol anaesthesia. Anaesth Intensive Care. 2009;37:598–603. https://doi.org/10.1177/0310057X0903700412.

    Article  CAS  PubMed  Google Scholar 

  36. Holmstrom A, Akeson J. Sevoflurane induces less cerebral vasodilation than isoflurane at the same A-line autoregressive index level. Acta Anaesthesiol Scand. 2005;49:16–22. https://doi.org/10.1111/j.1399-6576.2004.00576.x.

    Article  CAS  PubMed  Google Scholar 

  37. Summors AC, Gupta AK, Matta BF. Dynamic cerebral autoregulation during sevoflurane anesthesia: a comparison with isoflurane. Anesth Analg. 1999;88:341–5. https://doi.org/10.1097/00000539-199902000-00022.

    Article  CAS  PubMed  Google Scholar 

  38. Nishiyama T, Sugai N, Hanaoka K. Cerebrovascular CO2 reactivity in elderly and younger adult patients during sevoflurane anaesthesia. Can J Anaesth. 1997;44:160–4. https://doi.org/10.1007/BF03013004.

    Article  CAS  PubMed  Google Scholar 

  39. Kitaguchi K, Ohsumi H, Kuro M, Nakajima T, Hayashi Y. Effects of sevoflurane on cerebral circulation and metabolism in patients with ischemic cerebrovascular disease. Anesthesiology. 1993;79:704–9. https://doi.org/10.1097/00000542-199310000-00011.

    Article  CAS  PubMed  Google Scholar 

  40. Purrucker JC, Renzland J, Uhlmann L, et al. Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa(R): an observational study. Br J Anaesth. 2015;114:934–43. https://doi.org/10.1093/bja/aev070.

    Article  CAS  PubMed  Google Scholar 

  41. Ditz C, Baars H, Schacht H, et al. Volatile sedation with isoflurane in neurocritical care patients after poor-grade aneurysmal subarachnoid hemorrhage. World Neurosurg. 2023;173:e194–206. https://doi.org/10.1016/j.wneu.2023.02.032.

    Article  PubMed  Google Scholar 

  42. Bosel J, Purrucker JC, Nowak F, et al. Volatile isoflurane sedation in cerebrovascular intensive care patients using AnaConDa((R)): effects on cerebral oxygenation, circulation, and pressure. Intensive Care Med. 2012;38:1955–64. https://doi.org/10.1007/s00134-012-2708-8.

    Article  CAS  PubMed  Google Scholar 

  43. Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond agitation-sedation scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–44. https://doi.org/10.1164/rccm.2107138.

    Article  PubMed  Google Scholar 

  44. Torne R, Culebras D, Sanchez-Etayo G, et al. Double hemispheric Microdialysis study in poor-grade SAH patients. Sci Rep. 2020;10:7466. https://doi.org/10.1038/s41598-020-64543-x.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 2000;47:701–9; discussion 9–10 https://doi.org/10.1097/00006123-200009000-00035

  46. Sackey PV, Martling CR, Granath F, Radell PJ. Prolonged isoflurane sedation of intensive care unit patients with the Anesthetic Conserving Device. Crit Care Med. 2004;32:2241–6. https://doi.org/10.1097/01.ccm.0000145951.76082.77.

    Article  CAS  PubMed  Google Scholar 

  47. Kapinya KJ, Prass K, Dirnagl U. Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism? NeuroReport. 2002;13:1431–5. https://doi.org/10.1097/00001756-200208070-00017.

    Article  CAS  PubMed  Google Scholar 

  48. Petersen KD, Landsfeldt U, Cold GE, et al. Intracranial pressure and cerebral hemodynamic in patients with cerebral tumors: a randomized prospective study of patients subjected to craniotomy in propofol-fentanyl, isoflurane-fentanyl, or sevoflurane-fentanyl anesthesia. Anesthesiology. 2003;98:329–36. https://doi.org/10.1097/00000542-200302000-00010.

    Article  CAS  PubMed  Google Scholar 

  49. Goren S, Kahveci N, Alkan T, Goren B, Korfali E. The effects of sevoflurane and isoflurane on intracranial pressure and cerebral perfusion pressure after diffuse brain injury in rats. J Neurosurg Anesthesiol. 2001;13:113–9. https://doi.org/10.1097/00008506-200104000-00008.

    Article  CAS  PubMed  Google Scholar 

  50. Heavner MS, Gorman EF, Linn DD, Yeung SYA, Miano TA. Systematic review and meta-analysis of the correlation between bispectral index (BIS) and clinical sedation scales: toward defining the role of BIS in critically ill patients. Pharmacotherapy. 2022;42:667–76. https://doi.org/10.1002/phar.2712.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cold GE, Bundgaard H, von Oettingen G, Jensen KA, Landsfeldt U, Larsen KM. ICP during anaesthesia with sevoflurane: a dose-response study. Effect of hypocapnia Acta Neurochir Suppl. 1998;71:279–81. https://doi.org/10.1007/978-3-7091-6475-4_81.

    Article  CAS  PubMed  Google Scholar 

  52. Bundgaard H, von Oettingen G, Larsen KM, et al. Effects of sevoflurane on intracranial pressure, cerebral blood flow and cerebral metabolism. A dose-response study in patients subjected to craniotomy for cerebral tumours. Acta Anaesthesiol Scand. 1998;42:621–7. https://doi.org/10.1111/j.1399-6576.1998.tb05292.x.

    Article  CAS  PubMed  Google Scholar 

  53. Banevicius G, Rugyte D, Macas A, Tamasauskas A, Stankevicius E. The effects of sevoflurane and propofol on cerebral hemodynamics during intracranial tumors surgery under monitoring the depth of anesthesia. Medicina (Kaunas). 2010;46:743–52.

    Article  PubMed  Google Scholar 

  54. Sturesson LW, Malmkvist G, Bodelsson M, Niklason L, Jonson B. Carbon dioxide rebreathing with the anaesthetic conserving device, AnaConDa(R). Br J Anaesth. 2012;109:279–83. https://doi.org/10.1093/bja/aes102.

    Article  CAS  PubMed  Google Scholar 

  55. Bomberg H, Meiser F, Daume P, et al. Halving the volume of AnaConDa: evaluation of a new small-volume anesthetic reflector in a test lung model. Anesth Analg. 2019;129:371–9. https://doi.org/10.1213/ANE.0000000000003452.

    Article  CAS  PubMed  Google Scholar 

  56. Juhasz M, Molnar L, Fulesdi B, Vegh T, Pall D, Molnar C. Effect of sevoflurane on systemic and cerebral circulation, cerebral autoregulation and CO(2) reactivity. BMC Anesthesiol. 2019;19:109. https://doi.org/10.1186/s12871-019-0784-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zalikowska-Gardocka M, Niewada M, Niewinski G, et al. Early predictors of liver injury in patients on parenteral nutrition. Clin Nutr ESPEN. 2022;51:319–22. https://doi.org/10.1016/j.clnesp.2022.08.007.

    Article  PubMed  Google Scholar 

  58. Lescot T, Karvellas C, Beaussier M, Magder S. Acquired liver injury in the intensive care unit. Anesthesiology. 2012;117:898–904. https://doi.org/10.1097/ALN.0b013e318266c6df.

    Article  PubMed  Google Scholar 

  59. Muller MB, Terpolilli NA, Schwarzmaier SM, Briegel J, Huge V. Balanced volatile sedation with isoflurane in critically ill patients with aneurysmal subarachnoid haemorrhage—a retrospective observational study. Front Neurol. 2023;14:1164860. https://doi.org/10.3389/fneur.2023.1164860.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nishiyama T, Yokoyama T, Hanaoka K. Liver function after sevoflurane or isoflurane anaesthesia in neurosurgical patients. Can J Anaesth. 1998;45:753–6. https://doi.org/10.1007/BF03012146.

    Article  CAS  PubMed  Google Scholar 

  61. L’Heude M, Poignant S, Elaroussi D, Espitalier F, Ferrandiere M, Laffon M. Nephrogenic diabetes insipidus associated with prolonged sedation with sevoflurane in the intensive care unit. Br J Anaesth. 2019;122:e73–5. https://doi.org/10.1016/j.bja.2019.02.009.

    Article  CAS  PubMed  Google Scholar 

  62. Dagal A, Lam AM. Cerebral autoregulation and anesthesia. Curr Opin Anaesthesiol. 2009;22:547–52. https://doi.org/10.1097/ACO.0b013e32833020be.

    Article  PubMed  Google Scholar 

  63. Perbet S, Bourdeaux D, Sautou V, et al. A pharmacokinetic study of 48-hour sevoflurane inhalation using a disposable delivery system (AnaConDa(R)) in ICU patients. Minerva Anestesiol. 2014;80:655–65.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Acquisition of data and analysis and interpretation were performed by AW, JL, NH, JK and CD. Statistical analyses were performed by JK and CD. The first draft of the manuscript was written by CD and JK. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript and gave their consent for publication.

Corresponding author

Correspondence to Claudia Ditz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval/Informed Consent

This prospective, single-center, observational study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Approval of the Ethics Committee of the University of Lübeck (reference 19-177) was obtained, and all patients or their legal representatives provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leppert, J., Küchler, J., Wagner, A. et al. Prospective Observational Study of Volatile Sedation with Sevoflurane After Aneurysmal Subarachnoid Hemorrhage Using the Sedaconda Anesthetic Conserving Device. Neurocrit Care (2024). https://doi.org/10.1007/s12028-024-01959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12028-024-01959-7

Keywords

Navigation