Skip to main content

Advertisement

Log in

Pretreatment with Clodronate Improved Neurological Function by Preventing Reduction of Posthemorrhagic Cerebral Blood Flow in Experimental Subarachnoid Hemorrhage

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Brain perivascular macrophages (PVMs) are potential treatment targets for subarachnoid hemorrhage (SAH), and previous studies revealed that their depletion by clodronate (CLD) improved outcomes after experimental SAH. However, the underlying mechanisms are not well understood. Therefore, we investigated whether reducing PVMs by CLD pretreatment improves SAH prognosis by inhibiting posthemorrhagic impairment of cerebral blood flow (CBF).

Methods

In total, 80 male Sprague–Dawley rats received an intracerebroventricular injection of the vehicle (liposomes) or CLD. Subsequently, the rats were categorized into the prechiasmatic saline injection (sham) and blood injection (SAH) groups after 72 h. We assessed its effects on weak and severe SAH, which were induced by 200- and 300-µL arterial blood injections, respectively. In addition, neurological function at 72 h and CBF changes from before the intervention to 5 min after were assessed in rats after sham/SAH induction as the primary and secondary end points, respectively.

Results

CLD significantly reduced PVMs before SAH induction. Although pretreatment with CLD in the weak SAH group provided no additive effects on the primary end point, rats in the severe SAH group showed significant improvement in the rotarod test. In the severe SAH group, CLD inhibited acute reduction of CBF and tended to decrease hypoxia-inducible factor 1α expression. Furthermore, CLD reduced the number of PVMs in rats subjected to sham and SAH surgery, although no effects were observed in oxidative stress and inflammation.

Conclusions

Our study proposes that pretreatment with CLD-targeting PVMs can improve the prognosis of severe SAH through a candidate mechanism of inhibition of posthemorrhagic CBF reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author.

References

  1. Lawton MT, Vates GE. Subarachnoid hemorrhage. N Engl J Med. 2017;377(3):257–66. https://doi.org/10.1056/NEJMcp1605827.

    Article  PubMed  Google Scholar 

  2. Hasegawa Y, Uchikawa H, Kajiwara S, Morioka M. Central sympathetic nerve activation in subarachnoid hemorrhage. J Neurochem. 2022;160(1):34–50. https://doi.org/10.1111/jnc.15511.

    Article  CAS  PubMed  Google Scholar 

  3. Iyonaga T, Shinohara K, Mastuura T, Hirooka Y, Tsutsui H. Brain perivascular macrophages contribute to the development of hypertension in stroke-prone spontaneously hypertensive rats via sympathetic activation. Hypertens Res. 2020;43(2):99–110. https://doi.org/10.1038/s41440-019-0333-4.

    Article  CAS  PubMed  Google Scholar 

  4. Park L, Uekawa K, Garcia-Bonilla L, et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Aβ peptides. Circ Res. 2017;121(3):258–69. https://doi.org/10.1161/circresaha.117.311054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng J, Pang J, Huang L, et al. LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol. 2019;21:101121. https://doi.org/10.1016/j.redox.2019.101121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wan H, Brathwaite S, Ai J, Hynynen K, Macdonald RL. Role of perivascular and meningeal macrophages in outcome following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2021;41(8):1842–57. https://doi.org/10.1177/0271678x20980296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hasegawa Y, Suzuki H, Altay O, Zhang JH. Preservation of tropomyosin-related kinase B (TrkB) signaling by sodium orthovanadate attenuates early brain injury after subarachnoid hemorrhage in rats. Stroke. 2011;42(2):477–83. https://doi.org/10.1161/STROKEAHA.110.597344.

    Article  CAS  PubMed  Google Scholar 

  8. Jeon H, Ai J, Sabri M, Tariq A, Macdonald RL. Learning deficits after experimental subarachnoid hemorrhage in rats. Neuroscience. 2010;169(4):1805–14. https://doi.org/10.1016/j.neuroscience.2010.06.039.

    Article  CAS  PubMed  Google Scholar 

  9. Prunell GF, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. NeuroReport. 2002;13(18):2553–6. https://doi.org/10.1097/01.wnr.0000052320.62862.37.

    Article  PubMed  Google Scholar 

  10. Leclerc JL, Garcia JM, Diller MA, et al. A comparison of pathophysiology in humans and rodent models of subarachnoid hemorrhage. Front Mol Neurosci. 2018;11:71. https://doi.org/10.3389/fnmol.2018.00071.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang XS, Zhang X, Zhang QR, et al. Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats. Brain Res. 2015;1624:113–24. https://doi.org/10.1016/j.brainres.2015.07.020.

    Article  CAS  PubMed  Google Scholar 

  12. Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52(1):165–75. https://doi.org/10.1227/01.NEU.0000039901.14069.77.

    Article  PubMed  Google Scholar 

  13. Takemoto Y, Hasegawa Y, Hayashi K, et al. The stabilization of central sympathetic nerve activation by renal denervation prevents cerebral vasospasm after subarachnoid hemorrhage in rats. Transl Stroke Res. 2020;11(3):528–40. https://doi.org/10.1007/s12975-019-00740-9.

    Article  CAS  PubMed  Google Scholar 

  14. Hasegawa Y, Nakagawa T, Uekawa K, et al. Therapy with the combination of amlodipine and Irbesartan has persistent preventative effects on stroke onset associated with BDNF preservation on cerebral vessels in hypertensive rats. Transl Stroke Res. 2016;7(1):79–87. https://doi.org/10.1007/s12975-014-0383-5.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Stat Valid Stroke. 1995;26(4):627–34. https://doi.org/10.1161/01.str.26.4.627.

    Article  CAS  Google Scholar 

  16. Suzuki H, Hasegawa Y, Chen W, Kanamaru K, Zhang JH. Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol. 2010;68(5):650–60. https://doi.org/10.1002/ana.22102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hasegawa Y, Nakagawa T, Matsui K, Kim-Mitsuyama S. Renal denervation in the acute phase of ischemic stroke provides brain protection in hypertensive rats. Stroke. 2017;48(4):1104–7. https://doi.org/10.1161/STROKEAHA.116.015782.

    Article  PubMed  Google Scholar 

  18. Dong YF, Kataoka K, Tokutomi Y, et al. Beneficial effects of combination of valsartan and amlodipine on salt-induced brain injury in hypertensive rats. J Pharmacol Exp Ther. 2011;339(2):358–66. https://doi.org/10.1124/jpet.111.182576.

    Article  CAS  PubMed  Google Scholar 

  19. Smolek T, Cubinkova V, Brezovakova V, et al. Genetic background influences the propagation of tau pathology in transgenic rodent models of tauopathy. Front Aging Neurosci. 2019;11:343. https://doi.org/10.3389/fnagi.2019.00343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  21. Fujimori K, Kajiwara S, Hasegawa Y, Uchikawa H, Morioka M. Microscopic observation of morphological changes in cerebral arteries and veins in hyperacute phase after experimental subarachnoid hemorrhage: an in-vivo analysis. Neuroreport. 2023;34(3):184–9. https://doi.org/10.1097/wnr.0000000000001879.

    Article  CAS  PubMed  Google Scholar 

  22. He Q, Ma Y, Liu J, et al. Biological functions and regulatory mechanisms of hypoxia-inducible factor-1alpha in ischemic stroke. Front Immunol. 2021;12:801985. https://doi.org/10.3389/fimmu.2021.801985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanafy KA. The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation. 2013;10:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu Y, Pang J, Peng J, et al. Apolipoprotein E deficiency aggravates neuronal injury by enhancing neuroinflammation via the JNK/c-Jun pathway in the early phase of experimental subarachnoid hemorrhage in mice. Oxid Med Cell Longev. 2019;2019:3832648. https://doi.org/10.1155/2019/3832648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Islam R, Vrionis F, Hanafy KA. Microglial TLR4 is critical for neuronal injury and cognitive dysfunction in subarachnoid hemorrhage. Neurocrit Care. 2022;37(3):761–9. https://doi.org/10.1007/s12028-022-01552-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heiss WD. Experimental evidence of ischemic thresholds and functional recovery. Stroke. 1992;23(11):1668–72. https://doi.org/10.1161/01.str.23.11.1668.

    Article  CAS  PubMed  Google Scholar 

  27. Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K. The temporal profile of cerebral blood flow and tissue metabolites indicates sustained metabolic depression after experimental subarachnoid hemorrhage in rats. Neurosurgery. 2011;68(1):223–9. https://doi.org/10.1227/NEU.0b013e3181fe23c1.

    Article  PubMed  Google Scholar 

  28. Zheng L, Guo Y, Zhai X, et al. Perivascular macrophages in the CNS: from health to neurovascular diseases. CNS Neurosci Ther. 2022;28(12):1908–20. https://doi.org/10.1111/cns.13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shiraishi D, Fujiwara Y, Horlad H, et al. CD163 is required for protumoral activation of macrophages in human and murine sarcoma. Cancer Res. 2018;78(12):3255–66. https://doi.org/10.1158/0008-5472.Can-17-2011.

    Article  CAS  PubMed  Google Scholar 

  30. Quirié A, Demougeot C, Bertrand N, et al. Effect of stroke on arginase expression and localization in the rat brain. Eur J Neurosci. 2013;37(7):1193–202. https://doi.org/10.1111/ejn.12111.

    Article  PubMed  Google Scholar 

  31. Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab. 2010;30(11):1793–803. https://doi.org/10.1038/jcbfm.2010.137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hanafy KA. The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflamm. 2013;10:83. https://doi.org/10.1186/1742-2094-10-83.

    Article  CAS  Google Scholar 

  33. Polfliet MM, Goede PH, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK. A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J Neuroimmunol. 2001;116(2):188–95. https://doi.org/10.1016/s0165-5728(01)00282-x.

    Article  CAS  PubMed  Google Scholar 

  34. Yu Y, Zhang ZH, Wei SG, Serrats J, Weiss RM, Felder RB. Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction. Hypertension. 2010;55(3):652–9. https://doi.org/10.1161/HYPERTENSIONAHA.109.142836.

    Article  CAS  PubMed  Google Scholar 

  35. Zenker D, Begley D, Bratzke H, Rübsamen-Waigmann H, von Briesen H. Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. J Physiol. 2003;551(Pt 3):1023–32. https://doi.org/10.1113/jphysiol.2003.045880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerganova G, Riddell A, Miller AA. CNS border-associated macrophages in the homeostatic and ischaemic brain. Pharmacol Ther. 2022;240:108220. https://doi.org/10.1016/j.pharmthera.2022.108220.

    Article  CAS  PubMed  Google Scholar 

  37. Pires PW, Girgla SS, McClain JL, Kaminski NE, van Rooijen N, Dorrance AM. Improvement in middle cerebral artery structure and endothelial function in stroke-prone spontaneously hypertensive rats after macrophage depletion. Microcirculation. 2013;20(7):650–61. https://doi.org/10.1111/micc.12064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for the English language editing.

Funding

This study was funded by JSPS KAKENHI (grant 19K09459).

Author information

Authors and Affiliations

Authors

Contributions

HU and YH contributed to the study’s conception and design. HU, K. Kameno, K. Kai, SK, KF, KU, and YF performed the experiments. HU and YH performed the statistical analysis. AM and SK-M helped with the interpretations. HU wrote the first draft of the manuscript. YH revised the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Yu Hasegawa.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All experiments were approved by the Institutional Animal Care and Use Committee of Kumamoto University, and all applicable institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchikawa, H., Kameno, K., Kai, K. et al. Pretreatment with Clodronate Improved Neurological Function by Preventing Reduction of Posthemorrhagic Cerebral Blood Flow in Experimental Subarachnoid Hemorrhage. Neurocrit Care 39, 207–217 (2023). https://doi.org/10.1007/s12028-023-01754-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-023-01754-w

Keywords

Navigation