Skip to main content

Advertisement

Log in

The immune regulatory function of B7-H3 in malignancy: spotlight on the IFN-STAT1 axis and regulation of tumor-associated macrophages

  • REVIEW
  • Published:
Immunologic Research Aims and scope Submit manuscript

A Correction to this article was published on 22 February 2024

This article has been updated

Abstract

B7-H3 is a member of the B7 superfamily and a putative inhibitory immune checkpoint molecule. Several early-phase clinical trials have reported promising anti-tumor activity and safety of anti-cancer drugs targeting B7-H3, suggesting that it may be a promising target for a potential next-generation immune checkpoint inhibitor. Despite ongoing clinical studies, most B7-H3-targeted drugs being currently investigated rely on direct cytotoxicity as their mechanisms of action rather than modulating its function as an immune checkpoint, at least in part due to its incompletely understood immune regulatory function. Recent studies have begun to elucidate the role of B7-H3 in regulating the tumor microenvironment (TME). Emerging evidence suggests that B7-H3 may regulate the interferon-STAT1 axis in the TME and promote immune suppression. Similarly, increasing evidence shows B7-H3 may be implicated in promoting M1 to M2 polarization of tumor-associated macrophages (TAMs). There is also accumulating evidence suggesting that B7-H3 may play a role in the heterotypic fusion of cancer stem cells and macrophages, thereby promoting tumor invasion and metastasis. Here, we review the recent advances in the understanding of B7-H3 cancer immunobiology with a focus on highlighting its potential role in the interferon priming of TAMs and the heterotypic fusion of TAMs with cancer stem cells and suggest future direction in elucidating its immune checkpoint function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  3. Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022;19(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  4. Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discovery. 2022;21(7):509–28.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol. 2022;15(1):111.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77.

    Article  CAS  PubMed  Google Scholar 

  7. Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, et al. B7–H3: a costimulatory molecule for T cell activation and IFN-γ production. Nat Immunol. 2001;2(3):269–74.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y, et al. Immune checkpoint of B7–H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol. 2022;15(1):153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kontos F, Michelakos T, Kurokawa T, Sadagopan A, Schwab JH, Ferrone CR, et al. B7–H3: an attractive target for antibody-based immunotherapy. Clin Cancer Res. 2021;27(5):1227–35.

    Article  CAS  PubMed  Google Scholar 

  10. Kanchan RK, Doss D, Khan P, Nasser MW, Mahapatra S. To kill a cancer: targeting the immune inhibitory checkpoint molecule, B7–H3. Biochim Biophys Acta Rev Cancer. 2022;1877(5):188783.

    Article  CAS  PubMed  Google Scholar 

  11. Getu AA, Tigabu A, Zhou M, Lu J, Fodstad O, Tan M. New frontiers in immune checkpoint B7–H3 (CD276) research and drug development. Mol Cancer. 2023;22(1):43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vigdorovich V, Ramagopal UA, Lazar-Molnar E, Sylvestre E, Lee JS, Hofmeyer KA, et al. Structure and T cell inhibition properties of B7 family member, B7–H3. Structure. 2013;21(5):707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou WT, Jin WL. B7–H3/CD276: an emerging cancer immunotherapy. Front Immunol. 2021;12:701006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shenderov E, De Marzo AM, Lotan TL, Wang H, Chan S, Lim SJ, et al. Neoadjuvant enoblituzumab in localized prostate cancer: a single-arm, phase 2 trial. Nat Med. 2023;29(4):888–97.

    Article  CAS  PubMed  Google Scholar 

  15. Aggarwal C, Prawira A, Antonia S, Rahma O, Tolcher A, Cohen RB, et al. Dual checkpoint targeting of B7–H3 and PD-1 with enoblituzumab and pembrolizumab in advanced solid tumors: interim results from a multicenter phase I/II trial. J Immunother Cancer. 2022;10:4.

    Article  Google Scholar 

  16. Patel MR, Doi T, Koyama T, Falchook GS, Friedman CF, Piha-Paul SA, et al. (2023) 690P Ifinatamab deruxtecan (I-DXd; DS-7300) in patients with advanced solid tumors: updated clinical and biomarker results from a phase I/II study. Annals of Oncology. 34:S481-S2

  17. Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol. 2023;20(7):694–713.

    Article  CAS  PubMed  Google Scholar 

  18. Hwang J, Zorko N, Elliott A, Lozada JA, Radovich M, Heath EI, et al. Pan-cancer associations of B7–H3 (CD276) transcriptional expression across human malignancies. J Clin Oncol. 2023;41(16):2624.

    Article  Google Scholar 

  19. Heather LM, Azin S, Andrew E, Ben XW, Sarah Rachel K, Patricia AS, et al. High expression of B7–H3 on stromal cells defines tumor and stromal compartments in epithelial ovarian cancer and is associated with limited immune activation. J Immunother Cancer. 2019;7(1):357.

    Article  Google Scholar 

  20. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33(3):463–7910.

    Article  CAS  PubMed  Google Scholar 

  21. Aung PP, Parra ER, Barua S, Sui D, Ning J, Mino B, et al. B7–H3 Expression in merkel cell carcinoma-associated endothelial cells correlates with locally aggressive primary tumor features and increased vascular density. Clin Cancer Res. 2019;25(11):3455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Fang C, Zhang G, Jiang F, Wang L, Hou J. Prognostic value of B7–H3 expression in patients with solid tumors: a meta-analysis. Oncotarget. 2017;8(54):93156–67.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zang X, Thompson RH, Al-Ahmadie HA, Serio AM, Reuter VE, Eastham JA, et al. B7–H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci. 2007;104(49):19458–63.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Tyagi A, Ly S, El-Dana F, Yuan B, Jaggupilli A, Grimm S, et al. Evidence supporting a role for the immune checkpoint protein B7–H3 in NK cell-mediated cytotoxicity against AML. Blood. 2022;139(18):2782–96.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Zhang Q, Chen W, Shan B, Ding Y, Zhang G, et al. B7–H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS ONE. 2013;8(8):e70689.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Kim Nah I, Park Min H, Kweon S-S, Lee Ji S. B7–H3 and B7–H4 expression in breast cancer and their association with clinicopathological variables and T cell infiltration. Pathobiology. 2020;87(3):179–92.

    Article  PubMed  Google Scholar 

  27. Lin W, Xu Y, Gao J, Zhang H, Sun Y, Qiu X, et al. Multi-omics data analyses identify B7–H3 as a novel prognostic biomarker and predict response to immune checkpoint blockade in head and neck squamous cell carcinoma. Front Immunol. 2021;12:757047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao S, Wang Y, Yang N, Mu M, Wu Z, Li H, et al. Genome-scale CRISPR-Cas9 screen reveals novel regulators of B7–H3 in tumor cells. J Immunother Cancer. 2022;10:6.

    Article  Google Scholar 

  29. Chen Y, Wu Y, Yang H, Wang J, Kong J, Yu L, et al. DNA methylation and mRNA expression of B7–H3 gene in ankylosing spondylitis: a case-control study. Immunol Invest. 2022;51(7):2025–34.

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Zhang H-L, Li Z-L, Du T, Chen Y-H, Wang Y, et al. FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nat Commun. 2021;12(1):2672.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Ahangar NK, Hemmat N, Khalaj-Kondori M, Shadbad MA, Sabaie H, Mokhtarzadeh A, et al. The regulatory cross-talk between microRNAs and novel members of the B7 family in human diseases: a scoping review. Int J Mol Sci. 2021;22:5.

    Article  Google Scholar 

  32. Zhao J, Lei T, Xu C, Li H, Ma W, Yang Y, et al. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7–H3. Biochem Biophys Res Commun. 2013;438(2):439–44.

    Article  CAS  PubMed  Google Scholar 

  33. Hu X, Xu M, Hu Y, Li N, Zhou L. B7–H3, negatively regulated by miR-128, promotes colorectal cancer cell proliferation and migration. Cell Biochem Biophys. 2021;79(2):397–405.

    Article  CAS  PubMed  Google Scholar 

  34. Yang X, Feng KX, Li H, Wang L, Xia H. MicroRNA-199a inhibits cell proliferation, migration, and invasion and activates AKT/mTOR signaling pathway by targeting B7–H3 in cervical cancer. Technol Cancer Res Treat. 2020;19:1533033820942245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang S, Mou J, Cui L, Wang X, Zhang Z. Astragaloside IV inhibits cell proliferation of colorectal cancer cell lines through down-regulation of B7–H3. Biomed Pharmacother. 2018;102:1037–44.

    Article  CAS  PubMed  Google Scholar 

  36. Liu Z, Zhang W, Phillips JB, Arora R, McClellan S, Li J, et al. Immunoregulatory protein B7–H3 regulates cancer stem cell enrichment and drug resistance through MVP-mediated MEK activation. Oncogene. 2019;38(1):88–102.

    Article  PubMed  Google Scholar 

  37. Liao H, Ding M, Zhou N, Yang Y, Chen L. B7H3 promotes the epithelialmesenchymal transition of NSCLC by targeting SIRT1 through the PI3K/AKT pathway. Mol Med Rep. 2022;25:3.

    Article  Google Scholar 

  38. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips JB, et al. Immunoregulatory protein B7–H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1alpha. Cancer Res. 2016;76(8):2231–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nunes-Xavier CE, Karlsen KF, Tekle C, Pedersen C, Oyjord T, Hongisto V, et al. Decreased expression of B7–H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors. Oncotarget. 2016;7(6):6891–901.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Liu J, Que L, Tang X. The immunoregulatory protein B7–H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway. J Cancer. 2019;10(23):5770–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng N, Bei Y, Song Y, Zhang W, Xu L, Zhang W, et al. B7–H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy. Biochem Pharmacol. 2021;183:114298.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng R, Chen Y, Zhou H, Wang B, Du Q, Chen Y. B7–H3 expression and its correlation with clinicopathologic features, angiogenesis, and prognosis in intrahepatic cholangiocarcinoma. APMIS. 2018;126(5):396–402.

    Article  CAS  PubMed  Google Scholar 

  43. Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, et al. B7–H3 promotes colorectal cancer angiogenesis through activating the NF- kappaB pathway to induce VEGFA expression. Cell Death Dis. 2020;11(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Han S, Wang Y, Shi X, Zong L, Liu L, Zhang J, et al. Negative roles of B7–H3 and B7–H4 in the microenvironment of cervical cancer. Exp Cell Res. 2018;371(1):222–30.

    Article  CAS  PubMed  Google Scholar 

  45. Lu H, Shi T, Wang M, Li X, Gu Y, Zhang X, et al. B7–H3 inhibits the IFN-gamma-dependent cytotoxicity of Vgamma9Vdelta2 T cells against colon cancer cells. Oncoimmunology. 2020;9(1):1748991.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Si S, Wang L, Cao H, Xu Y, Zhan Q. Co-deficiency of B7–H3 and B7–H4 identifies high CD8 + T cell infiltration and better prognosis in pancreatic cancer. BMC Cancer. 2022;22(1):211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee CC, Ho KH, Huang TW, Shih CM, Hsu SY, Liu AJ, et al. A regulatory loop among CD276, miR-29c-3p, and Myc exists in cancer cells against natural killer cell cytotoxicity. Life Sci. 2021;277:119438.

    Article  CAS  PubMed  Google Scholar 

  48. Miyamoto T, Murakami R, Hamanishi J, Tanigaki K, Hosoe Y, Mise N, et al. B7–H3 suppresses antitumor immunity via the CCL2-CCR2-M2 macrophage axis and contributes to ovarian cancer progression. Cancer Immunol Res. 2022;10(1):56–69.

    Article  CAS  PubMed  Google Scholar 

  49. Jian An H, Cheng C, Yibei Z, Xueguang Z. Induced expression of B7–H3 on the lung cancer cells and macrophages suppresses tumor-specific T cell immunity. Eur Respir J. 2012;40(Suppl 56):P1221.

    Google Scholar 

  50. Inamura K, Amori G, Yuasa T, Yamamoto S, Yonese J, Ishikawa Y. Relationship of B7–H3 expression in tumor cells and tumor vasculature with FOXP3+ regulatory T cells in renal cell carcinoma. Cancer Manag Res. 2019;11:7021–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yim J, Koh J, Kim S, Song SG, Ahn HK, Kim YA, et al. Effects of B7–H3 expression on tumour-infiltrating immune cells and clinicopathological characteristics in non-small-cell lung cancer. Eur J Cancer. 2020;133:74–85.

    Article  CAS  PubMed  Google Scholar 

  52. Luo L, Chapoval AI, Flies DB, Zhu G, Hirano F, Wang S, et al. B7–H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J Immunol. 2004;173(9):5445–50.

    Article  CAS  PubMed  Google Scholar 

  53. Cheon H, Wang Y, Wightman SM, Jackson MW, Stark GR. How cancer cells make and respond to interferon-I. Trends Cancer. 2023;9(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  54. Boukhaled GM, Harding S, Brooks DG. Opposing roles of type i interferons in cancer immunity. Annu Rev Pathol. 2021;16:167–98.

    Article  CAS  PubMed  Google Scholar 

  55. Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-gamma in tumor progression and regression: a review. Biomark Res. 2020;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Meissl K, Macho-Maschler S, Muller M, Strobl B. The good and the bad faces of STAT1 in solid tumours. Cytokine. 2017;89:12–20.

    Article  CAS  PubMed  Google Scholar 

  57. Cheon H, Holvey-Bates EG, Schoggins JW, Forster S, Hertzog P, Imanaka N, et al. IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. Embo j. 2013;32(20):2751–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheon H, Holvey-Bates EG, McGrail DJ, Stark GR. PD-L1 sustains chronic, cancer cell-intrinsic responses to type I interferon, enhancing resistance to DNA damage. Proc Natl Acad Sci U S A. 2021;118:47.

    Article  Google Scholar 

  59. Gato-Canas M, Zuazo M, Arasanz H, Ibanez-Vea M, Lorenzo L, Fernandez-Hinojal G, et al. PDL1 signals through conserved sequence motifs to overcome interferon- mediated cytotoxicity. Cell Rep. 2017;20(8):1818–29.

    Article  CAS  PubMed  Google Scholar 

  60. Liu HJ, Du H, Khabibullin D, Zarei M, Wei K, Freeman GJ, et al. mTORC1 upregulates B7–H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion. Nat Commun. 2023;14(1):1214.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Huang M, Luo J, Ji X, Hu M, Xue Y, Liu Q. Deficiency of tumor-expressed B7–H3 augments anti-tumor efficacy of anti- PD-L1 monotherapy rather than the combined chemoimmunotherapy in ovarian cancer. Pharmacol Res. 2022;186:106512.

    Article  CAS  PubMed  Google Scholar 

  62. Purvis IJ, Avilala J, Guda MR, Venkataraman S, Vibhakar R, Tsung AJ, et al. Role of MYC-miR-29-B7-H3 in medulloblastoma growth and angiogenesis. J Clin Med. 2019;8:8.

    Article  Google Scholar 

  63. Oh Y, Park R, Kim SY, Park SH, Jo S, Kim TH, et al. B7–H3 regulates osteoclast differentiation via type I interferon- dependent IDO induction. Cell Death Dis. 2021;12(11):971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Costa-Pereira AP, Tininini S, Strobl B, Alonzi T, Schlaak JF, Is’harc H, et al. Mutational switch of an IL-6 response to an interferon-gamma-like response. Proc Natl Acad Sci U S A. 2002;99(12):8043–7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Herrero C, Hu X, Li WP, Samuels S, Sharif MN, Kotenko S, et al. Reprogramming of IL-10 activity and signaling by IFN-gamma. J Immunol. 2003;171(10):5034–41.

    Article  CAS  PubMed  Google Scholar 

  66. Sharif MN, Tassiulas I, Hu Y, Mecklenbrauker I, Tarakhovsky A, Ivashkiv LB. IFN-alpha priming results in a gain of proinflammatory function by IL-10: implications for systemic lupus erythematosus pathogenesis. J Immunol. 2004;172(10):6476–81.

    Article  CAS  PubMed  Google Scholar 

  67. Ho HH, Ivashkiv LB. Role of STAT3 in type I interferon responses .Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem. 2006;281(20):14111–8.

    Article  CAS  PubMed  Google Scholar 

  68. Yan J, Wang ZY, Yang HZ, Liu HZ, Mi S, Lv XX, et al. Timing is critical for an effective anti-metastatic immunotherapy: the decisive role of IFNgamma/STAT1-mediated activation of autophagy. PLoS ONE. 2011;6(9):e24705.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  69. Regis G, Pensa S, Boselli D, Novelli F, Poli V. Ups and downs: the STAT1:STAT3 seesaw of Interferon and gp130 receptor signalling. Semin Cell Dev Biol. 2008;19(4):351–9.

    Article  CAS  PubMed  Google Scholar 

  70. Li G, Quan Y, Che F, Wang L. B7–H3 in tumors: friend or foe for tumor immunity? Cancer Chemother Pharmacol. 2018;81(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  71. Cai D, Li J, Liu D, Hong S, Qiao Q, Sun Q, et al. Tumor-expressed B7–H3 mediates the inhibition of antitumor T-cell functions in ovarian cancer insensitive to PD-1 blockade therapy. Cell Mol Immunol. 2020;17(3):227–36.

    Article  CAS  PubMed  Google Scholar 

  72. Lee YH, Martin-Orozco N, Zheng P, Li J, Zhang P, Tan H, et al. Inhibition of the B7–H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 2017;27(8):1034–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK, et al. B7–H3 and B7–H4 expression in non-small-cell lung cancer. Lung Cancer. 2006;53(2):143–51.

    Article  PubMed  Google Scholar 

  74. Deng J, Ma M, Wang D, Zhu H, Hua L, Sun S, et al. Expression and clinical significance of immune checkpoint regulator B7–H3 (CD276) in human meningioma. World Neurosurg. 2020;135:e12–8.

    Article  PubMed  Google Scholar 

  75. Qin X, Sun W, Wang C, Li M, Zhao X, Li C, et al. Mifepristone inhibited the expression of B7–H2, B7–H3, B7–H4 and PD-L2 in adenomyosis. Reprod Biol Endocrinol. 2021;19(1):114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saeednejad Zanjani L, Madjd Z, Axcrona U, Abolhasani M, Rasti A, Asgari M, et al. Cytoplasmic expression of B7–H3 and membranous EpCAM expression are associated with higher grade and survival outcomes in patients with clear cell renal cell carcinoma. Ann Diagn Pathol. 2020;46:151483.

    Article  PubMed  Google Scholar 

  77. Ingebrigtsen VA, Boye K, Tekle C, Nesland JM, Flatmark K, Fodstad O. B7–H3 expression in colorectal cancer: nuclear localization strongly predicts poor outcome in colon cancer. Int J Cancer. 2012;131(11):2528–36.

    Article  CAS  PubMed  Google Scholar 

  78. Yonesaka K, Haratani K, Takamura S, Sakai H, Kato R, Takegawa N, et al. B7–H3 negatively modulates CTL-mediated cancer immunity. Clin Cancer Res. 2018;24(11):2653–64.

    Article  CAS  PubMed  Google Scholar 

  79. Shi W, Wang Y, Zhao Y, Kim JJ, Li H, Meng C, et al. Immune checkpoint B7–H3 is a therapeutic vulnerability in prostate cancer harboring PTEN and TP53 deficiencies. Sci Transl Med. 2023;15(695):eadf6724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kang FB, Wang L, Li D, Zhang YG, Sun DX. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7–H3 expression. Oncol Rep. 2015;33(1):274–82.

    Article  CAS  PubMed  Google Scholar 

  81. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Ailles LE, Weissman IL. Cancer stem cells in solid tumors. Curr Opin Biotechnol. 2007;18(5):460–6.

    Article  CAS  PubMed  Google Scholar 

  83. Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 2020;20(3):158–73.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang L-N, Zhang D-D, Yang L, Gu Y-X, Zuo Q-P, Wang H-Y, et al. Roles of cell fusion between mesenchymal stromal/stem cells and malignant cells in tumor growth and metastasis. FEBS J. 2021;288(5):1447–56.

    Article  CAS  PubMed  Google Scholar 

  85. Dittmar T, Hass R. Intrinsic signalling factors associated with cancer cell-cell fusion. Cell Commun Signal. 2023;21(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT, et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv. 2018;4(9):eaat7828.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  87. Cozzo AJ, Coleman MF, Hursting SD. You complete me: tumor cell-myeloid cell nuclear fusion as a facilitator of organ-specific metastasis. Front Oncol. 2023;13:1191332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ahmadzadeh K, Pereira M, Vanoppen M, Bernaerts E, Ko JH, Mitera T, et al. Multinucleation resets human macrophages for specialized functions at the expense of their identity. EMBO Rep. 2023;24(3):e56310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Clawson GA, Matters GL, Xin P, Imamura-Kawasawa Y, Du Z, Thiboutot DM, et al. Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PLoS ONE. 2015;10(8):e0134320.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Aguirre LA, Montalban-Hernandez K, Avendano-Ortiz J, Marin E, Lozano R, Toledano V, et al. Tumor stem cells fuse with monocytes to form highly invasive tumor-hybrid cells. Oncoimmunology. 2020;9(1):1773204.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Brito A, Merle C, Lagarde P, Faustin B, Devin A, Lartigue L, et al. Cell fusion enhances energy metabolism of mesenchymal tumor hybrid cells to sustain their proliferation and invasion. BMC Cancer. 2021;21(1):863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Beziaud L, Young CM, Alonso AM, Norkin M, Minafra AR, Huelsken J. IFNγ-induced stem-like state of cancer cells as a driver of metastatic progression following immunotherapy. Cell Stem Cell. 2023;30(6):818-31.e6.

    Article  CAS  PubMed  Google Scholar 

  93. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440(7084):692–6.

    Article  CAS  PubMed  ADS  Google Scholar 

  94. Li M, Basile JR, Mallya S, Lin YL. The impact and outcomes of cancer-macrophage fusion. BMC Cancer. 2023;23(1):497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sambandam Y, Ethiraj P, Hathaway-Schrader JD, Novince CM, Panneerselvam E, Sundaram K, et al. Autoregulation of RANK ligand in oral squamous cell carcinoma tumor cells. J Cell Physiol. 2018;233(8):6125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gao Y, Fang P, Li WJ, Zhang J, Wang GP, Jiang DF, et al. LncRNA NEAT1 sponges miR-214 to regulate M2 macrophage polarization by regulation of B7–H3 in multiple myeloma. Mol Immunol. 2020;117:20–8.

    Article  CAS  PubMed  Google Scholar 

  97. Zuo J, Wang B, Long M, Gao Z, Zhang Z, Wang H, et al. The type 1 transmembrane glycoprotein B7–H3 interacts with the glycolytic enzyme ENO1 to promote malignancy and glycolysis in HeLa cells. FEBS Lett. 2018;592(14):2476–88.

    Article  CAS  PubMed  Google Scholar 

  98. Shi T, Ma Y, Cao L, Zhan S, Xu Y, Fu F, et al. B7–H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2. Cell Death Dis. 2019;10(4):308.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang C, Li Y, Jia L, Kim JK, Li J, Deng P, et al. CD276 expression enables squamous cell carcinoma stem cells to evade immune surveillance. Cell Stem Cell. 2021;28(9):1597-613.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future (2022R1A2C1003860 to Jong Dae Ji).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: R.P. and J.J.; validation: R.P., J.Y., M.S., S.L., and J.J.; writing—original draft preparation: R.P. and J.J.; writing—review and editing: R.P., J.Y., M.S., S.L., and J.J.; visualization: R.P.; supervision: J.J.; project administration: R.P. and J.J. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jong Dae Ji.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: A spelling error was identified in an author’s name, which has been corrected. Namely, Dr. Moazzam Shazad’s name has been corrected to “Shahzad”. The affiliation 1 were corrected from “Department of Hematology/Oncology, Moffitt Cancer Center, Tampa, FL, USA” to “Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, R., Yu, J., Shahzad, M. et al. The immune regulatory function of B7-H3 in malignancy: spotlight on the IFN-STAT1 axis and regulation of tumor-associated macrophages. Immunol Res (2024). https://doi.org/10.1007/s12026-024-09458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12026-024-09458-9

Keywords

Navigation