Skip to main content
Log in

A pilot study investigating early postmortem interval of rats based on ambient temperature and postmortem interval-related metabolites in blood

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Estimation of the postmortem interval (PMI), especially the early PMI, plays a key role in forensic practice. Although several studies based on metabolomics approaches have presented significant findings for PMI estimation, most did not examine the effects of ambient temperature. In this study, gas chromatography–mass spectrometry (GC‒MS)‒based metabolomics was adopted to explore the changes in metabolites in the cardiac blood of suffocated rats at various ambient temperatures (5 °C, 15 °C, 25 °C, and 35 °C) from 0 to 24 h after death. Isoleucine, alanine, proline, valine, glycerol, glycerol phosphate, xanthine, and hypoxanthine were found to contribute to PMI in all temperature groups. Hypoxanthine and isoleucine were chosen to establish estimation models (equations) with an interpolation function using PMI as the dependent variable (f(x, y)), relative intensity as the independent variable x, and temperature as the independent variable y. Thereafter, these two models were validated with predictive samples and shown to have potential predictive ability. The findings indicate that isoleucine, alanine, proline, valine, glycerol, glycerol phosphate, xanthine, and hypoxanthine may be significant for PMI estimation at various ambient temperatures. Furthermore, a method to determine PMI based on ambient temperature and PMI-related metabolites was explored, which may provide a basis for future studies and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GC‒MS:

Gas chromatography‒mass spectrometry

NIST:

National Institute of Standards and Technology

PCA:

Principal component analysis

PLS:

Partial least-squares

PMI:

Postmortem interval

QC:

Quality control

VIP:

Variable importance in the projection

References

  1. Knight B. The evolution of methods for estimating the time of death from body temperature. Forensic Sci Int. 1988;36:47–55. https://doi.org/10.1016/0379-0738(88)90214-9.

    Article  CAS  PubMed  Google Scholar 

  2. Vanezis P, Trujillo O. Evaluation of hypostasis using a colorimeter measuring system and its application to assessment of the post-mortem interval (time of death). Forensic Sci Int. 1996;78:19–28. https://doi.org/10.1016/0379-0738(95)01845-x.

    Article  CAS  PubMed  Google Scholar 

  3. Sun T, Yang T, Zhang H, Zhuo L, Liu L. Interpolation function estimates post mortem interval under ambient temperature correlating with blood ATP level. Forensic Sci Int. 2014;238:47–52. https://doi.org/10.1016/j.forsciint.2014.02.014.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson LA, Ferris JA. Analysis of postmortem DNA degradation by single-cell gel electrophoresis. Forensic Sci Int. 2002;126:43–7. https://doi.org/10.1016/s0379-0738(02)00027-0.

    Article  CAS  PubMed  Google Scholar 

  5. Lv YH, Ma JL, Pan H, Zhang H, Li WC, Xue AM, et al. RNA degradation as described by a mathematical model for postmortem interval determination. J Forensic Leg Med. 2016;44:43–52. https://doi.org/10.1016/j.jflm.2016.08.015.

    Article  PubMed  Google Scholar 

  6. Abo El-Noor MM, Elhosary NM, Khedr NF, El-Desouky KI. Estimation of early postmortem interval through biochemical and pathological changes in rat heart and kidney. Am J Forensic Med Pathol. 2016;37:40–6. https://doi.org/10.1097/paf.0000000000000214.

    Article  PubMed  Google Scholar 

  7. Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9. https://doi.org/10.1080/004982599238047.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst. 2012;137(2):293–300. https://doi.org/10.1039/c1an15605e.

    Article  CAS  PubMed  Google Scholar 

  9. Sato T, Zaitsu K, Tsuboi K, Nomura M, Kusano M, Shima N, et al. A preliminary study on postmortem interval estimation of suffocated rats by GC-MS/MS-based plasma metabolic profiling. Anal Bioanal Chem. 2015;407:3659–65. https://doi.org/10.1007/s00216-015-8584-7.

    Article  CAS  PubMed  Google Scholar 

  10. Citti C, Palazzoli F, Licata M, Vilella A, Leo G, Zoli M, et al. Untargeted rat brain metabolomics after oral administration of a single high dose of cannabidiol. J Pharm Biomed Anal. 2018;161:1–11. https://doi.org/10.1016/j.jpba.2018.08.021.

    Article  CAS  PubMed  Google Scholar 

  11. Yuliana ND, Hunaefi D, Goto M, Ishikawa YT, Verpoorte R. Measuring the health effects of food by metabolomics. Crit Rev Food Sci Nutr. 2022;62(23):6359–73. https://doi.org/10.1080/10408398.2021.1901256.

    Article  CAS  PubMed  Google Scholar 

  12. Yang QJ, Zhao JR, Hao J, Li B, Huo Y, Han YL, et al. Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J Cachexia Sarcopenia Muscle. 2018;9(1):71–85.https://doi.org/10.1002/jcsm.12246.

    Article  PubMed  Google Scholar 

  13. Wu H, Xu C, Gu Y, Yang S, Wang Y, Wang C. An improved pseudotargeted GC-MS/MS-based metabolomics method and its application in radiation-induced hepatic injury in a rat model. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1152:122250. https://doi.org/10.1016/j.jchromb.2020.122250.

  14. Kaszynski RH, Nishiumi S, Azuma T, Yoshida M, Kondo T, Takahashi M, et al. Postmortem interval estimation: a novel approach utilizing gas chromatography/mass spectrometry-based biochemical profiling. Anal Bioanal Chem. 2016;408:3103–12. https://doi.org/10.1007/s00216-016-9355-9.

    Article  CAS  PubMed  Google Scholar 

  15. Wu Z, Lu X, Chen F, Dai X, Ye Y, Yan Y, et al. Estimation of early postmortem interval in rats by GC-MS-based metabolomics. Leg Med (Tokyo). 2018;31:42–8. https://doi.org/10.1016/j.legalmed.2017.12.014.

    Article  CAS  PubMed  Google Scholar 

  16. Dai X, Fan F, Ye Y, Lu X, Chen F, Wu Z, et al. An experimental study on investigating the postmortem interval in dichlorvos poisoned rats by GC/MS-based metabolomics. Leg Med (Tokyo). 2019;36:28–36. https://doi.org/10.1016/j.legalmed.2018.10.002.

    Article  CAS  PubMed  Google Scholar 

  17. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83. https://doi.org/10.1038/nprot.2011.335.

    Article  CAS  PubMed  Google Scholar 

  18. Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst. 2006;131(10):1075–8. https://doi.org/10.1039/b604498k.

    Article  CAS  PubMed  Google Scholar 

  19. Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4:2249–64. https://doi.org/10.4155/bio.12.204.

    Article  CAS  PubMed  Google Scholar 

  20. Yang M, Li H, Yang T, Ding Z, Wu S, Qiu X, et al. A study on the estimation of postmortem interval based on environmental temperature and concentrations of substance in vitreous humor. J Forensic Sci. 2018;63(3):745–51. https://doi.org/10.1111/1556-4029.13615.

    Article  CAS  PubMed  Google Scholar 

  21. Donaldson AE, Lamont IL. Metabolomics of post-mortem blood: identifying potential markers of post-mortem interval. Metabolomics. 2015;11:237–45. https://doi.org/10.1007/s11306-014-0691-5.

    Article  CAS  Google Scholar 

  22. Henssge C, Madea B. Estimation of the time since death in the early post-mortem period. Forensic Sci Int. 2004;144:167–75. https://doi.org/10.1016/j.forsciint.2004.04.051.

    Article  CAS  PubMed  Google Scholar 

  23. Bisegna P, Henssge C, Althaus L, Giusti G. Estimation of the time since death: sudden increase of ambient temperature. Forensic Sci Int. 2008;176:196–9. https://doi.org/10.1016/j.forsciint.2007.09.007.

    Article  PubMed  Google Scholar 

  24. Poloz YO, O’Day DH. Determining time of death: temperature-dependent postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. Int J Legal Med. 2009;123:305–14. https://doi.org/10.1007/s00414-009-0343-x.

    Article  PubMed  Google Scholar 

  25. James RA, Hoadley PA, Sampson BG. Determination of postmortem interval by sampling vitreous humour. Am J Forensic Med Pathol. 1997;18:158–62. https://doi.org/10.1097/00000433-199706000-00010.

    Article  CAS  PubMed  Google Scholar 

  26. Passos ML, Santos AM, Pereira AI, Santos JR, Santos AJ, Saraiva ML, et al. Estimation of postmortem interval by hypoxanthine and potassium evaluation in vitreous humor with a sequential injection system. Talanta. 2009;79:1094–9. https://doi.org/10.1016/j.talanta.2009.02.054.

    Article  CAS  PubMed  Google Scholar 

  27. Rognum TO, Holmen S, Musse MA, Dahlberg PS, Stray-Pedersen A, Saugstad OD, et al. Estimation of time since death by vitreous humor hypoxanthine, potassium, and ambient temperature. Forensic Sci Int. 2016;262:160–5. https://doi.org/10.1016/j.forsciint.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  28. Zelentsova EA, Yanshole LV, Snytnikova OA, Yanshole VV, Tsentalovich YP, Sagdeev RZ. Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors. Metabolomics. 2016;12:1–11. https://doi.org/10.1007/s11306-016-1118-2.

    Article  CAS  Google Scholar 

  29. Bergström J, Fürst P, Norée LO, Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol. 1974;36:693–7. https://doi.org/10.1152/jappl.1974.36.6.693.

    Article  PubMed  Google Scholar 

  30. Perry TL, Hansen S, Gandham SS. Postmortem changes of amino compounds in human and rat brain. J Neurochem. 1981;36:406–10. https://doi.org/10.1111/j.1471-4159.1981.tb01608.x.

    Article  CAS  PubMed  Google Scholar 

  31. Zelentsova EA, Yanshole LV, Melnikov AD, Kudryavtsev IS, Novoselov VP, Tsentalovich YP. Post-mortem changes in metabolomic profiles of human serum, aqueous humor and vitreous humor. Metabolomics. 2020;16:80. https://doi.org/10.1007/s11306-020-01700-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Sciences Foundation of China (grant numbers 82072111, 82030057) and the Scientific Research Fund of Wannan Medical College (grant number WK202105).

Author information

Authors and Affiliations

Authors

Contributions

Shiyong Fang: conceptualization, investigation, writing — original draft, writing — review and editing. Xinhua Dai: investigation, writing — review and editing. Xiaoling Shi: data curation, formal analysis. Li Xiao: investigation, data curation, formal analysis. Yi Ye: writing — review and editing. Linchuan Liao: conceptualization, writing — review and editing.

Corresponding author

Correspondence to Linchuan Liao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Dai, X., Shi, X. et al. A pilot study investigating early postmortem interval of rats based on ambient temperature and postmortem interval-related metabolites in blood. Forensic Sci Med Pathol (2023). https://doi.org/10.1007/s12024-023-00643-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12024-023-00643-0

Keywords

Navigation