Skip to main content

Advertisement

Log in

Keratin Expression in Endocrine Organs and their Neoplasms

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Keratins are intermediate filaments that provide mechanical support and fulfill a variety of additional functions in epithelial cells. Keratins show outstanding degree of molecular diversity. In humans, 54 functional keratin genes exist. Twenty common types of keratins are expressed in highly specific patterns related to epithelial type and stage of cellular differentiation. In general, keratins are classified as high-molecular-weight keratins (expressed in normal stratified epithelium and tumors derived from it) and low-molecular-weight keratins (expressed in normal simple epithelium and tumors derived from it). Histologically, endocrine organs belong to simple epithelium; thus, endocrine tissues usually express low-molecular-weight keratins. When an endocrine organ undergoes malignant transformation, its keratin profile usually remains constant. However, keratin expression in endocrine organs and endocrine tumors is much more complicated because of their diversified histogenesis. In this review article, we will first briefly review the molecular biology and protein chemistry of the keratins. We will then review the expression patterns of keratins in normal endocrine tissue and endocrine neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moll R, Franke WW, Schiller DL, et al. The catalog of human cytokeratins: pattern of expression in normal epithelia, tumor and culture cells. Cell 31:11–24, 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Moll R, Zimbelmann R, Goldschmidt MD, et al. The human gene encoding cytokeratin 20 andits expression during fetal development and in gastrointestinal carcinomas. Differentiation 53:75–93, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Schweizer J, Bowden PE, Coulombe PA, et al. New consensus nomenclature for mammalian keratins. J Cell Biol 174:169–74, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Sun TT, Green H. Keratin filaments of cultured human epidermal cells. Formation of intermolecualr disulfide bonds during terminal differentiation. J Bio Chem 25:2053–60, 1978.

    Google Scholar 

  5. Steinert PM, Idler WW, Zimlichman S. Self-assembly of bovine epidermal keratin filaments in vitro. J Mol Biol 108:547–67, 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Franke WW, Shiller DL, Hatzfeld M, Winter S. Protein Complexes of intermediate-sized filaments: Melting of cytokeratin compleses in urea reveals different polypeptide separation characteristics. Proc Natl Acad Sci USA 80:7113–7, 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Steinert PM, Idler WW, Zhou XM, et al. Structual and functional implications of amino acid sequences of keratin intermediate filament subunits. Ann N Y Acad Sci 455:451–61, 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Maddox P, Sasieni P, Szarewski A, et al. Differential expression of keratins 10, 17 and 19 in normal cervical epithelium, cervical intraepithelial neoplasia, and cervical carcinoma. J Clin Pathol 52:41–6, 1999.

    Article  PubMed  CAS  Google Scholar 

  9. McLachlan AD. Coiled coil formation and sequence regularities in the helical regions of alpha-keratin. J Mol Biol 124:297–304, 1978.

    Article  PubMed  CAS  Google Scholar 

  10. Geisler N, Schunemann J, Weber K. Chemical cross-linking indicates a staggered and antiparallel protofilament of desmin intermediate filaments and characterizes one higher-level complex between protofilaments. Eur J Biochem 206:841–52, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Fuchs E. The cytoskeleton and disease: genetic disorders of intermediate filaments. Annu Rev Genet 30:197–231, 1996.

    Article  PubMed  CAS  Google Scholar 

  12. Hanukoglu I, Fuchs E. The cDNA sequence of a Type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Cell 33:915–24, 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Hanukoglu I, Fuchs E. The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins. Cell 31:243–52, 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Steinert PM, Liem RK. Intermediate filament dynamics. Cell 60:521–3, 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Doran TI, Vidrich A, Sun TT. Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells. Cell 22:17–25, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Kopan R, Traska G, Fuchs E. Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J Cell Biol 105:427–40, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Kronenberg MS, Clark JH. Changes in keratin expression during the estrogen-mediated differentiation of rat vaginal epithelium. Endocrinology 117:1480–9, 1985.

    PubMed  CAS  Google Scholar 

  18. Kronenberg MS, Clark JH. Identification and analysis of keratin polypeptides from isolated rat vaginal epithelium. Endocrinology 117:1469–79, 1985.

    PubMed  CAS  Google Scholar 

  19. Nelson KG, Slaga TJ. Keratin modifications in epidermis, papillomas, and carcinomas during two-stage carcinogenesis in the SENCAR mouse. Cancer Res 42:4176–81, 1982.

    PubMed  CAS  Google Scholar 

  20. Nelson KG, Slaga TJ. Effects of inhibitors of tumor promotion on 12-O-tetradecanoylphorbol- 13-acetate-induced keratin modification in mouse epidermis. Carcinogenesis 3:1311–5, 1982.

    Article  PubMed  CAS  Google Scholar 

  21. Krauss S, Franke WW. Organization and sequence of the human gene encoding cytokeratin 8. Gene 86:241–9, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Osborn M, Weber K. Intermediate filament proteins: a multigene family distinguishing major cell lineages. Trends Biochem Sci 11:469–72, 1986.

    Article  CAS  Google Scholar 

  23. Steinert PM, Roop DR. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem 57:593–625, 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Sun TT, Eichner R, Nelson WG, et al. Keratin classes: molecular markers for different types of epithelial differentiation. J Invest Dermatol 81:109s–15s, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology 40:403–39, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol 129:705–33, 2008.

    Article  PubMed  CAS  Google Scholar 

  27. Fonseca E, Nesland JM, Hoie J, Sobrinho-Simoes M. Pattern of expression of intermediate cytokeratin filaments in the thyroid gland: an immunohistochemical study of simple and stratified epithelial-type cytokeratins. Virchows Arch 430:239–45, 1997.

    Article  PubMed  CAS  Google Scholar 

  28. Wolfe HJ, Delellis RA, Voelkel EF, Tashjian AH Jr. Distribution of calcitonin-containing cells in the normal neonatal human thyroid gland: a correlation of morphology with peptide content. J Clin Endocrinol Metab 41:1076–81, 1975.

    PubMed  CAS  Google Scholar 

  29. Lam KY, Lui MC, Lo CY. Cytokeratin expression profiles in thyroid carcinomas. Eur J Surg Oncol 27:631–5, 2001.

    Article  PubMed  CAS  Google Scholar 

  30. Fonseca E, Nesland JM, Hoie J, Sobrinho-Simoes M. Pattern of expression of intermediate cytokeratin filaments in the thyroid gland: an immunohistochemical study of sample and stratified epithelial-type cytokeratins. Virchows Arch 430:239–45, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Chu PG, Weiss LM. Cytokeratin 14 expression in epithelial neoplasms: a survey of 435 cases with emphasis on its value in differentiating squamous cell carcinomas from other epithelial neoplasms. Histopathology 39:9–16, 2001, Ref Type: Journal (Full).

    Article  PubMed  CAS  Google Scholar 

  32. Chu PG, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: A survey of 435 cases. Mod Pathol 13:962–72, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. Bejarano PA, Nikiforov YE, Swenson ES, Biddinger PW. Thyroid transcription factor-1, thyroglobulin, cytokeratin 7, and cytokeratin 20 in thyroid neoplasms. Appl Immunohistochem Molecul Morphol 8:189–94, 2000.

    Article  CAS  Google Scholar 

  34. Cheung CC, Ezzat S, Freeman JL, et al. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 14:338–442, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Beesley MF, McLaren KM. Cytokeratin 19 and galectin-3 immunohistochemistry in the differential diagnosis of solitary thyroid nodules. Histopathology 41:236–43, 2002.

    Article  PubMed  CAS  Google Scholar 

  36. de Matos PS, Ferreira AP, de Oliveira FF, et al. Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology 47:391–401, 2005.

    Article  PubMed  Google Scholar 

  37. Prasad ML, Pellegata NS, Huang Y, et al. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol 18:48–57, 2005.

    Article  PubMed  CAS  Google Scholar 

  38. Nasr MR, Mukhopadhyay S, Zhang S, Katzenstein AL. Immunohistochemical markers in diagnosis of papillary thyroid carcinoma: Utility of HBME1 combined with CK19 immunostaining. Mod Pathol 19:1631–7, 2006.

    Article  PubMed  CAS  Google Scholar 

  39. Rossi ED, Raffaelli M, Mule' A, et al. Simultaneous immunohistochemical expression of HBME-1 and galectin-3 differentiates papillary carcinomas from hyperfunctioning lesions of the thyroid. Histopathology 48:795–800, 2006.

    Article  PubMed  CAS  Google Scholar 

  40. Miettinen M, Franssila KO. Variable expression of keratins and nearly uniform lack of thyroid transcription factor 1 in thyroid anaplastic carcinoma. Hum Pathol 31:1139–45, 2000.

    Article  PubMed  CAS  Google Scholar 

  41. Chu PG, Weiss LM. Expression of cytokeratin 5/6 in epithelial neoplasms: an immunohistochemical study of 509 cases. Mod Pathol 15:6–10, 2002.

    Article  PubMed  Google Scholar 

  42. LaGuette J, Matias-Guiu X, Rosai J. Thyroid paraganglioma: a clinicopathologic and immunohistochemical study of three cases. Am J Surg Pathol 21:748–53, 1997.

    Article  PubMed  CAS  Google Scholar 

  43. Miettinen M, Clark R, Lehto VP, et al. Intermediate-filament proteins in parathyroid glands and parathyroid adenomas. Arch Pathol Lab Med 109:986–9, 1985.

    PubMed  CAS  Google Scholar 

  44. Cote RJ, Cordon-Cardo C, Reuter VE, Rosen PP. Immunopathology of adrenal and renal cortical tumors. Coordinated change in antigen expression is associated with neoplastic conversion in the adrenal cortex. Am J Pathol 136:1077–84, 1990.

    PubMed  CAS  Google Scholar 

  45. Gaffey MJ, Traweek ST, Mills SE, et al. Cytokeratin expression in adrenocortical neoplasia: an immunohistochemical and biochemical study with implications for the differential diagnosis of adrenocortical, hepatocellular, and renal cell carcinoma. Hum Pathol 23:144–53, 1992.

    Article  PubMed  CAS  Google Scholar 

  46. Miettinen M, Lehto VP, Virtanen I. Immunofluorescence microscopic evaluation of the intermediate filament expression of the adrenal cortex and medulla and their tumors. Am J Pathol 118:360–6, 1985.

    PubMed  CAS  Google Scholar 

  47. Haak HR, Fleuren GJ. Neuroendocrine differentiation of adrenocortical tumors. Cancer 75:860–4, 1995.

    Article  PubMed  CAS  Google Scholar 

  48. Kimura N, Nakazato Y, Nagura H, Sasano N. Expression of intermediate filaments in neuroendocrine tumors. Arch Pathol Lab Med 114:506–10, 1990.

    PubMed  CAS  Google Scholar 

  49. Orrell JM, Hales SA. Paragangliomas of the cauda equina have a distinctive cytokeratin immunophenotype. Histopathology 21:479–81, 1992.

    Article  PubMed  CAS  Google Scholar 

  50. Ikeda H, Yoshimoto T. IImmunohistochemical distribution of simple-epithelial-type keratins and other intermediate filament proteins in the developing human pituitary gland. Cell Tissue Res 266:59–64, 1991.

    Article  PubMed  CAS  Google Scholar 

  51. Gyure KA, Morrison AL, Thompson LDR, Prayson RA. Cytokeratin subset markers in pituitary adenomas (Abstract). Mod Pathol 14:208A, 2001.

    Google Scholar 

  52. Nishioka H, Ito H, Haraoka J, Hirano A. Histological changes in the hypofunctional pituitary gland following conventional radiotherapy for adenoma. Histopathology 38:561–6, 2001.

    Article  PubMed  CAS  Google Scholar 

  53. Sano T, Ohshima T, Yamada S. Expression of glycoprotein hormones and intracytoplasmic distribution of cytokeratin in growth hormone-producing pituitary adenomas. Pathol Res Pract 187:530–3, 1991.

    PubMed  CAS  Google Scholar 

  54. Kovacs K, Horvath E. Pathology of growth hormone-producing tumors of the human pituitary. Semin Diagn Pathol 3:18–33, 1986.

    PubMed  CAS  Google Scholar 

  55. Ezzat S, Kontogeorgos G, Redelmeier DA, et al. In vivo responsiveness of morphological variants of growth hormone-producing pituitary adenomas to octreotide. Eur J Endocrinol 133:686–90, 1995.

    Article  PubMed  CAS  Google Scholar 

  56. Bhayana S, Booth GL, Asa SL, et al. The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab 90:6290–5, 2005.

    Article  PubMed  CAS  Google Scholar 

  57. Eschbacher JM, Coons SW. Cytokeratin CK20 is a sensitive marker for Crooke's cells and the early cytoskeletal changes associated with hypercortisolism within pituitary corticotrophs. Endocrine Pathol 17:365–76, 2006, Ref Type: Generic.

    Article  CAS  Google Scholar 

  58. Coons SW, Estrada SI, Gamez R, White WI. Cytokeratin CK7 and CK20 expression in pituitary adenomas. Endocrine Pathol 16:201–10, 2005, Ref Type: Generic.

    Article  CAS  Google Scholar 

  59. Miettinen M, Cupo W. Neural cell adhesion molecule distribution in soft tissue tumors. Hum Pathol 24:62–6, 1993.

    Article  PubMed  CAS  Google Scholar 

  60. Abou-Elella AA, Weisenburger DD, Vose JM, et al. Primary mediastinal large B-cell lymphoma: a clinicopathologic study of 43 patients from the Nebraska Lymphoma Study Group. J Clin Oncol 17:784–90, 1999.

    PubMed  CAS  Google Scholar 

  61. Gould VE, Linnoila RI, Memoli VA, Warren WH. Neuroendocrine cells and neuroendocrine neoplasms of the lung. Pathol Annu 18 Pt 1:287–330, 1983.

    Google Scholar 

  62. Travis WD. The concept of pulmonary neuroendocrine tumours. In: Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC, eds. World Health Organization classification of tumours. pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon: IARC Press, pp. 19–20, 2004.

    Google Scholar 

  63. Travis WD, Linnoila RI, Tsokos MG, et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol 15:529–53, 1991.

    Article  PubMed  CAS  Google Scholar 

  64. Cai YC, Banner B, Glickman J, Odze RD. Cytokeratin 7 and 20 and thyroid transcription factor 1 can help distinguish pulmonary from gastrointestinal carcinoid and pancreatic endocrine tumors. Hum Pathol 32:1087–93, 2001.

    Article  PubMed  CAS  Google Scholar 

  65. Jerome M V, Mazieres J, Groussard O, et al. Expression of TTF-1 and cytokeratins in primary and secondary epithelial lung tumours: correlation with histological type and grade. Histopathology 45:125–34, 2004.

    Article  Google Scholar 

  66. Sturm N, Lantuejoul S, Laverriere MH, et al. Thyroid transcription factor 1 and cytokeratins 1, 5, 10, 14 (34betaE12) expression in basaloid and large-cell neuroendocrine carcinomas of the lung. Hum Pathol 32:918–25, 2001.

    Article  PubMed  CAS  Google Scholar 

  67. Rossi G, Marchioni A, Milani M, et al. TTF-1, cytokeratin 7, 34betaE12, and CD56/NCAM immunostaining in the subclassification of large cell carcinomas of the lung. Am J Clin Pathol 122:884–93, 2004.

    Article  PubMed  CAS  Google Scholar 

  68. Deshpande V, Fernandez-del CC, Muzikansky A, et al. Cytokeratin 19 is a powerful predictor of survival in pancreatic endocrine tumors. Am J Surg Pathol 28:1145–53, 2004.

    Article  PubMed  Google Scholar 

  69. Schmitt AM, Anlauf M, Rousson V, et al. WHO 2004 criteria and CK19 are reliable prognostic markers in pancreatic endocrine tumors. Am J Surg Pathol 31:1677–82, 2007.

    Article  PubMed  Google Scholar 

  70. Sidhu GS, Chandra P, Cassai ND. Merkel cells, normal and neoplastic: an update. Ultrastruct Pathol 29:287–94, 2005.

    Article  PubMed  Google Scholar 

  71. Battifora H, Silva EG. The use of antikeratin antibodies in the immunohistochemical distinction between neuroendocrine (Merkel cell) carcinoma of the skin, lymphoma, and oat cell carcinoma. Cancer 58:1040–6, 1986.

    Article  PubMed  CAS  Google Scholar 

  72. Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the clinical advisory committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 17:3835–49, 1999.

    PubMed  CAS  Google Scholar 

  73. Jensen K, Kohler S, Rouse RV. Cytokeratin staining in Merkel cell carcinoma: an immunohistochemical study of cytokeratins 5/6,7,17, and 20. Appl Immunohistochem Molecul Morphol 8:310–5, 2000.

    Article  CAS  Google Scholar 

  74. Chan JKC, Wenig BM, Tsang WYW, et al. Cytokeratin 20 immunoreactivity distinguishes Merkel cell (primary cutaneous neuroendocrine) carcinomas and salivary gland small cell carcinomas from small cell carcinomas of various sites. Am J Surg Pathol 21:226–34, 1997.

    Article  PubMed  CAS  Google Scholar 

  75. Abrahams NA, MacLennan GT, Khoury JD, et al. Chromophobe renal cell carcinoma: a comparative study of histological, immunohistochemical and ultrastructural features using high throughput tissue microarray. Histopathology 45:593–602, 2004.

    Article  PubMed  CAS  Google Scholar 

  76. Moll R, Lowe A, Laufer J, Franke WW. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol 140:427–47, 1992.

    PubMed  CAS  Google Scholar 

  77. Cheuk W, Kwan MY, Suster S, Chan JK. Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med 125:228–31, 2001.

    PubMed  CAS  Google Scholar 

  78. Cooper DS, Schermer A, Sun TT. Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: Strategies, applications and limitations. Lab Invest 52:243–56, 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiguo G. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, P.G., Lau, S.K. & Weiss, L.M. Keratin Expression in Endocrine Organs and their Neoplasms. Endocr Pathol 20, 1–10 (2009). https://doi.org/10.1007/s12022-009-9061-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-009-9061-7

Keywords

Navigation