Skip to main content

Advertisement

Log in

Biochemical and genetic diagnosis of 21-hydroxylase deficiency

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is caused by mutations in the CYP21A2 gene and is often fatal in its classic forms if not treated with glucocorticoids. In contrast, non-classic CAH (NCCAH), with a prevalence from 0.1 % up to a few percentages in certain ethnic groups, only results in mild partial cortisol insufficiency and patients survive without treatment. Most NCCAH cases are never identified, but unnecessary suffering due to hyperandrogenism, especially in females, can be avoided by a correct diagnosis. A 17-hydroprogesterone (17OHP) level above 300 nmol/L indicates classic CAH while 30–300 nmol/L in adult males or females (follicular phase or if anovulatoric) indicates NCCAH. The gold standard for diagnosing NCCAH is the ACTH stimulation test. Deletion, large gene conversions, and nine microconversion-derived mutations are the most common CYP21A2 mutations. However, almost 200 rare mutations have been described. Since there is a good genotype–phenotype relationship, genotyping provides valuable diagnostic, as well as prognostic information. Neonatal screening for CAH is now performed in an increasing number of countries with the main goal of reducing mortality and morbidity due to salt-losing adrenal crises in the newborn period. In addition, screening may shorten the time to diagnosis in virilized girls. Neonatal screening misses some patients with milder classic CAH and most NCCAH cases. In conclusion, diagnosing classic CAH is life-saving, but diagnosing NCCAH is also important to prevent unnecessary suffering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.C. White, P.W. Speiser, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 21(3), 245–291 (2000)

    CAS  PubMed  Google Scholar 

  2. D.P. Merke, S.R. Bornstein, Congenital adrenal hyperplasia. Lancet 365(9477), 2125–2136 (2005). doi:10.1016/S0140-6736(05)66736-0

    Article  PubMed  Google Scholar 

  3. P.W. Speiser, R. Azziz, L.S. Baskin, L. Ghizzoni, T.W. Hensle, D.P. Merke, H.F. Meyer-Bahlburg, W.L. Miller, V.M. Montori, S.E. Oberfield, M. Ritzen, P.C. White, Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 95(9), 4133–4160 (2010). doi:10.1210/jc.2009-2631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. H. Falhammar, M. Thoren, Clinical outcomes in the management of congenital adrenal hyperplasia. Endocrine 41(3), 355–373 (2012). doi:10.1007/s12020-011-9591-x

    Article  CAS  PubMed  Google Scholar 

  5. S. Gidlöf, H. Falhammar, A. Thilén, A. von Döbeln, M. Ritzén, A. Wedell, A. Nordenström, One hundred  years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol. 1(1), 35–43 (2013). doi:10.1016/S2213-8587(13)70007-X

    Article  PubMed  Google Scholar 

  6. H. Falhammar, L. Frisen, C. Norrby, A.L. Hirschberg, C. Almqvist, A. Nordenskjold, A. Nordenstrom, Increased mortality in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin. Endocrinol. Metab. 99(12), 2715–2721 (2014). doi:10.1210/jc.2014-2957

    Article  Google Scholar 

  7. H. Falhammar, A. Nordenstrom, Nonclassic congenital adrenal hyperplasia due to 21-hydroxylase deficiency: clinical presentation, diagnosis, treatment, and outcome. Endocrine (2015). doi:10.1007/s12020-015-0656-0

    Google Scholar 

  8. C. Moran, R. Azziz, E. Carmina, D. Dewailly, F. Fruzzetti, L. Ibanez, E.S. Knochenhauer, J.A. Marcondes, B.B. Mendonca, D. Pignatelli, M. Pugeat, V. Rohmer, P.W. Speiser, S.F. Witchel, 21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: a multicenter study. Am. J. Obstet. Gynecol. 183(6), 1468–1474 (2000). doi:10.1067/mob.2000.108020

    Article  CAS  PubMed  Google Scholar 

  9. M. Bidet, C. Bellanne-Chantelot, M.B. Galand-Portier, V. Tardy, L. Billaud, K. Laborde, C. Coussieu, Y. Morel, C. Vaury, J.L. Golmard, A. Claustre, E. Mornet, Z. Chakhtoura, I. Mowszowicz, A. Bachelot, P. Touraine, F. Kuttenn, Clinical and molecular characterization of a cohort of 161 unrelated women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency and 330 family members. J. Clin. Endocrinol. Metab. 94(5), 1570–1578 (2009). doi:10.1210/jc.2008-1582

    Article  CAS  PubMed  Google Scholar 

  10. S. Livadas, M. Dracopoulou, A. Dastamani, A. Sertedaki, M. Maniati-Christidi, A.M. Magiakou, C. Kanaka-Gantenbein, G.P. Chrousos, C. Dacou-Voutetakis, The spectrum of clinical, hormonal and molecular findings in 280 individuals with nonclassical congenital adrenal hyperplasia caused by mutations of the CYP21A2 gene. Clin. Endocrinol. (2014). doi:10.1111/cen.12543

    Google Scholar 

  11. S. Feldman, L. Billaud, J.C. Thalabard, M.C. Raux-Demay, I. Mowszowicz, F. Kuttenn, P. Mauvais-Jarvis, Fertility in women with late-onset adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 74(3), 635–639 (1992). doi:10.1210/jcem.74.3.1310999

    CAS  PubMed  Google Scholar 

  12. C. Moran, R. Azziz, N. Weintrob, S.F. Witchel, V. Rohmer, D. Dewailly, J.A. Marcondes, M. Pugeat, P.W. Speiser, D. Pignatelli, B.B. Mendonca, T.A. Bachega, H.F. Escobar-Morreale, E. Carmina, F. Fruzzetti, F. Kelestimur, Reproductive outcome of women with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. J. Clin. Endocrinol. Metab. 91(9), 3451–3456 (2006). doi:10.1210/jc.2006-0062

    Article  CAS  PubMed  Google Scholar 

  13. H. Falhammar, Non-classic congenital adrenal hyperplasia due to 21-hydoxylase deficiency as a cause of infertility and miscarriages. N. Z. Med. J. 123(1312), 77–80 (2010)

    PubMed  Google Scholar 

  14. M. Bidet, C. Bellanne-Chantelot, M.B. Galand-Portier, J.L. Golmard, V. Tardy, Y. Morel, S. Clauin, C. Coussieu, P. Boudou, I. Mowzowicz, A. Bachelot, P. Touraine, F. Kuttenn, Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 95(3), 1182–1190 (2010). doi:10.1210/jc.2009-1383

    Article  CAS  PubMed  Google Scholar 

  15. H. Falhammar, M. Thoren, K. Hagenfeldt, A 31-year-old woman with infertility and polycystic ovaries diagnosed with non-classic congenital adrenal hyperplasia due to a novel CYP21 mutation. J. Endocrinol. Invest. 31(2), 176–180 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. M. Pall, R. Azziz, J. Beires, D. Pignatelli, The phenotype of hirsute women: a comparison of polycystic ovary syndrome and 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil. Steril. 94(2), 684–689 (2010). doi:10.1016/j.fertnstert.2009.06.025

    Article  CAS  PubMed  Google Scholar 

  17. R. Azziz, E. Carmina, D. Dewailly, E. Diamanti-Kandarakis, H.F. Escobar-Morreale, W. Futterweit, O.E. Janssen, R.S. Legro, R.J. Norman, A.E. Taylor, S.F. Witchel, The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91(2), 456–488 (2009). doi:10.1016/j.fertnstert.2008.06.035

    Article  PubMed  Google Scholar 

  18. P.W. Speiser, B. Dupont, P. Rubinstein, A. Piazza, A. Kastelan, M.I. New, High frequency of nonclassical steroid 21-hydroxylase deficiency. Am. J. Hum. Genet. 37(4), 650–667 (1985)

    PubMed Central  CAS  PubMed  Google Scholar 

  19. L. Barzon, C. Scaroni, N. Sonino, F. Fallo, M. Gregianin, C. Macri, M. Boscaro, Incidentally discovered adrenal tumors: endocrine and scintigraphic correlates. J. Clin. Endocrinol. Metab. 83(1), 55–62 (1998)

    CAS  PubMed  Google Scholar 

  20. S.M. Baumgartner-Parzer, S. Pauschenwein, W. Waldhausl, K. Polzler, P. Nowotny, H. Vierhapper, Increased prevalence of heterozygous 21-OH germline mutations in patients with adrenal incidentalomas. Clin. Endocrinol. 56(6), 811–816 (2002)

    Article  CAS  Google Scholar 

  21. A. Patocs, M. Toth, C. Barta, M. Sasvari-Szekely, I. Varga, N. Szucs, C. Jakab, E. Glaz, K. Racz, Hormonal evaluation and mutation screening for steroid 21-hydroxylase deficiency in patients with unilateral and bilateral adrenal incidentalomas. Eur. J. Endocrinol. 147(3), 349–355 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. J. Patrova, I. Jarocka, H. Wahrenberg, H. Falhammar, Clinical outcomes in adrenal incidentaloma-experience from one centre. Endocr. Pract. 21(8), 870–877 (2015). doi:10.4158/EP15618.OR

    Article  PubMed  Google Scholar 

  23. H. Falhammar, Non-functioning adrenal incidentalomas caused by 21-hydroxylase deficiency or carrier status? Endocrine 47(1), 308–314 (2014). doi:10.1007/s12020-013-0162-1

    Article  CAS  PubMed  Google Scholar 

  24. R. Ravichandran, F. Lafferty, M.J. McGinniss, H.C. Taylor, Congenital adrenal hyperplasia presenting as massive adrenal incidentalomas in the sixth decade of life: report of two patients with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 81(5), 1776–1779 (1996)

    CAS  PubMed  Google Scholar 

  25. H. Falhammar, M. Thoren, An 88-year-old woman diagnosed with adrenal tumor and congenital adrenal hyperplasia: connection or coincidence? J. Endocrinol. Invest. 28(5), 449–453 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. J.P. Gutai, W.J. Meyer 3rd, A.A. Kowarski, C.J. Migeon, Twenty-four hour integrated concentrations of progesterone, 17-hydroxyprogesterone and cortisol in normal male subjects. J. Clin. Endocrinol. Metab. 44(1), 116–120 (1977)

    Article  CAS  PubMed  Google Scholar 

  27. S. Gidlof, A. Wedell, C. Guthenberg, U. von Dobeln, A. Nordenstrom, Nationwide neonatal screening for congenital adrenal hyperplasia in Sweden: A 26-year longitudinal prospective population-based study. JAMA Pediatr. 168(6), 567–574 (2014). doi:10.1001/jamapediatrics.2013.5321

    Article  PubMed  Google Scholar 

  28. P.C. White, Neonatal screening for congenital adrenal hyperplasia. Nat. Rev. Endocrinol. 5(9), 490–498 (2009). doi:10.1038/nrendo.2009.148

    Article  CAS  PubMed  Google Scholar 

  29. T.S. Varness, D.B. Allen, G.L. Hoffman, Newborn screening for congenital adrenal hyperplasia has reduced sensitivity in girls. J. Pediatr. 147(4), 493–498 (2005). doi:10.1016/j.jpeds.2005.04.035

    Article  PubMed  Google Scholar 

  30. R. Azziz, L.A. Hincapie, E.S. Knochenhauer, D. Dewailly, L. Fox, L.R. Boots, Screening for 21-hydroxylase-deficient nonclassic adrenal hyperplasia among hyperandrogenic women: a prospective study. Fertil. Steril. 72(5), 915–925 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. T.A. Bachega, A.E. Billerbeck, J.A. Marcondes, G. Madureira, I.J. Arnhold, B.B. Mendonca, Influence of different genotypes on 17-hydroxyprogesterone levels in patients with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. 52(5), 601–607 (2000)

    Article  CAS  Google Scholar 

  32. M.I. New, F. Lorenzen, A.J. Lerner, B. Kohn, S.E. Oberfield, M.S. Pollack, B. Dupont, E. Stoner, D.J. Levy, S. Pang, L.S. Levine, Genotyping steroid 21-hydroxylase deficiency: hormonal reference data. J. Clin. Endocrinol. Metab. 57(2), 320–326 (1983). doi:10.1210/jcem-57-2-320

    Article  CAS  PubMed  Google Scholar 

  33. D. Dewailly, M.C. Vantyghem-Haudiquet, C. Sainsard, J. Buvat, J.P. Cappoen, K. Ardaens, A. Racadot, J. Lefebvre, P. Fossati, Clinical and biological phenotypes in late-onset 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 63(2), 418–423 (1986). doi:10.1210/jcem-63-2-418

    Article  CAS  PubMed  Google Scholar 

  34. M.I. New, Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91(11), 4205–4214 (2006). doi:10.1210/jc.2006-1645

    Article  CAS  PubMed  Google Scholar 

  35. S. Nagasaka, K. Kubota, T. Motegi, E. Hayashi, M. Ohta, K. Takahashi, T. Takahashi, Y. Iwasaki, M. Koike, T. Nishikawa, A case of silent 21-hydroxylase deficiency with persistent adrenal insufficiency after removal of an adrenal incidentaloma. Clin. Endocrinol. 44(1), 111–116 (1996)

    Article  CAS  Google Scholar 

  36. A. Stoupa, L. Gonzalez-Briceno, G. Pinto, D. Samara-Boustani, C. Thalassinos, I. Flechtner, J. Beltrand, M. Bidet, A. Simon, M. Piketty, K. Laborde, Y. Morel, C. Bellanne-Chantelot, P. Touraine, M. Polak, Inadequate cortisol response to the tetracosactide (Synacthen(R)) test in non-classic congenital adrenal hyperplasia: an exception to the rule? Horm. Res. Paediatr. (2015). doi:10.1159/000369901

    PubMed  Google Scholar 

  37. S.F. Witchel, Non-classic congenital adrenal hyperplasia. Steroids 78(8), 747–750 (2013). doi:10.1016/j.steroids.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  38. P.C. White, M.I. New, B. Dupont, HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation. Proc. Natl. Acad. Sci. U.S.A. 81(23), 7505–7509 (1984)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. P.C. White, M.I. New, B. Dupont, Structure of human steroid 21-hydroxylase genes. Proc. Natl. Acad. Sci. U.S.A. 83(14), 5111–5115 (1986)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Y. Higashi, H. Yoshioka, M. Yamane, O. Gotoh, Y. Fujii-Kuriyama, Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene. Proc. Natl. Acad. Sci. U.S.A. 83(9), 2841–2845 (1986)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. J.A. Bristol, B.C. Furie, B. Furie, Propeptide processing during factor IX biosynthesis. Effect of point mutations adjacent to the propeptide cleavage site. J. Biol. Chem. 268(10), 7577–7584 (1993)

    CAS  PubMed  Google Scholar 

  42. L. Shen, L.C. Wu, S. Sanlioglu, R. Chen, A.R. Mendoza, A.W. Dangel, M.C. Carroll, W.B. Zipf, C.Y. Yu, Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. J. Biol. Chem. 269(11), 8466–8476 (1994)

    CAS  PubMed  Google Scholar 

  43. J.W. Werkmeister, M.I. New, B. Dupont, P.C. White, Frequent deletion and duplication of the steroid 21-hydroxylase genes. Am. J. Hum. Genet. 39(4), 461–469 (1986)

    PubMed Central  CAS  PubMed  Google Scholar 

  44. C.A. Blanchong, B. Zhou, K.L. Rupert, E.K. Chung, K.N. Jones, J.F. Sotos, W.B. Zipf, R.M. Rennebohm, Yung Yu, C.: deficiencies of human complement component C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in caucasians. The load of RCCX genetic diversity on major histocompatibility complex-associated disease. J. Exp. Med. 191(12), 2183–2196 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. P.W. Speiser, M.I. New, P.C. White, Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14, DR1. N. Engl. J. Med. 319(1), 19–23 (1988). doi:10.1056/NEJM198807073190104

    Article  CAS  PubMed  Google Scholar 

  46. Y. Higashi, A. Tanae, H. Inoue, Y. Fujii-Kuriyama, Evidence for frequent gene conversion in the steroid 21-hydroxylase P-450(C21) gene: implications for steroid 21-hydroxylase deficiency. Am. J. Hum. Genet. 42(1), 17–25 (1988)

    PubMed Central  CAS  PubMed  Google Scholar 

  47. M. Amor, K.L. Parker, H. Globerman, M.I. New, P.C. White, Mutation in the CYP21B gene (Ile-172—Asn) causes steroid 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. U.S.A. 85(5), 1600–1604 (1988)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. H. Globerman, M. Amor, K.L. Parker, M.I. New, P.C. White, Nonsense mutation causing steroid 21-hydroxylase deficiency. J. Clin. Investig. 82(1), 139–144 (1988). doi:10.1172/JCI113562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. P.W. Speiser, J. Dupont, D. Zhu, J. Serrat, M. Buegeleisen, M.T. Tusie-Luna, M. Lesser, M.I. New, P.C. White, Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Investig. 90(2), 584–595 (1992). doi:10.1172/JCI115897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. A. Wedell, A. Thilen, E.M. Ritzen, B. Stengler, H. Luthman, Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J. Clin. Endocrinol. Metab. 78(5), 1145–1152 (1994)

    CAS  PubMed  Google Scholar 

  51. J. Jaaskelainen, A. Levo, R. Voutilainen, J. Partanen, Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: good correlation in a well defined population. J. Clin. Endocrinol. Metab. 82(10), 3293–3297 (1997)

    CAS  PubMed  Google Scholar 

  52. N. Krone, A. Braun, A.A. Roscher, D. Knorr, H.P. Schwarz, Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J. Clin. Endocrinol. Metab. 85(3), 1059–1065 (2000). doi:10.1210/jcem.85.3.6441

    Article  CAS  PubMed  Google Scholar 

  53. N.M. Stikkelbroeck, L.H. Hoefsloot, I.J. de Wijs, B.J. Otten, A.R. Hermus, E.A. Sistermans, CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in The Netherlands: six novel mutations and a specific cluster of four mutations. J. Clin. Endocrinol. Metab. 88(8), 3852–3859 (2003)

    Article  CAS  PubMed  Google Scholar 

  54. A. Wedell, H. Luthman, Steroid 21-hydroxylase deficiency: two additional mutations in salt-wasting disease and rapid screening of disease-causing mutations. Hum. Mol. Genet. 2(5), 499–504 (1993)

    Article  CAS  PubMed  Google Scholar 

  55. K. Hagenfeldt, P.O. Janson, G. Holmdahl, H. Falhammar, H. Filipsson, L. Frisen, M. Thoren, A. Nordenskjold, Fertility and pregnancy outcome in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum. Reprod. 23(7), 1607–1613 (2008). doi:10.1093/humrep/den118

    Article  CAS  PubMed  Google Scholar 

  56. L. Frisen, A. Nordenstrom, H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, M. Thoren, K. Hagenfeldt, A. Moller, A. Nordenskjold, Gender role behavior, sexuality, and psychosocial adaptation in women with congenital adrenal hyperplasia due to CYP21A2 deficiency. J. Clin. Endocrinol. Metab. 94(9), 3432–3439 (2009). doi:10.1210/jc.2009-0636

    Article  CAS  PubMed  Google Scholar 

  57. A. Nordenstrom, L. Frisen, H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, M. Thoren, K. Hagenfeldt, A. Nordenskjold, Sexual function and surgical outcome in women with congenital adrenal hyperplasia due to CYP21A2 deficiency: clinical perspective and the patients’ perception. J. Clin. Endocrinol. Metab. 95(8), 3633–3640 (2010). doi:10.1210/jc.2009-2639

    Article  PubMed  Google Scholar 

  58. A. Strandqvist, H. Falhammar, P. Lichtenstein, A.L. Hirschberg, A. Wedell, C. Norrby, A. Nordenskjold, L. Frisen, A. Nordenstrom, Suboptimal psychosocial outcomes in patients with congenital adrenal hyperplasia: epidemiological studies in a nonbiased national cohort in Sweden. J. Clin. Endocrinol. Metab. 99(4), 1425–1432 (2014). doi:10.1210/jc.2013-3326

    Article  CAS  PubMed  Google Scholar 

  59. H. Falhammar, H.F. Nystrom, M. Thoren, Quality of life, social situation, and sexual satisfaction, in adult males with congenital adrenal hyperplasia. Endocrine 47(1), 299–307 (2014). doi:10.1007/s12020-013-0161-2

    Article  CAS  PubMed  Google Scholar 

  60. H. Falhammar, A. Butwicka, M. Landen, P. Lichtenstein, A. Nordenskjold, A. Nordenstrom, L. Frisen, Increased psychiatric morbidity in men with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 99(3), E554–E560 (2014). doi:10.1210/jc.2013-3707

    CAS  PubMed  Google Scholar 

  61. H. Engberg, A. Butwicka, A. Nordenstrom, A.L. Hirschberg, H. Falhammar, P. Lichtenstein, A. Nordenskjold, L. Frisen, M. Landen, Congenital adrenal hyperplasia and risk for psychiatric disorders in girls and women born between 1915 and 2010: a total population study. Psychoneuroendocrinology 60, 195–205 (2015). doi:10.1016/j.psyneuen.2015.06.017

    Article  PubMed  Google Scholar 

  62. H. Falhammar, Filipsson Nystrom, H., Wedell, A., Brismar, K., Thoren, M.: bone mineral density, bone markers, and fractures in adult males with congenital adrenal hyperplasia. Eur. J. Endocrinol. 168(3), 331–341 (2013). doi:10.1530/EJE-12-0865

    Article  CAS  PubMed  Google Scholar 

  63. H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, A. Nordenskjold, K. Hagenfeldt, M. Thoren, Fractures and bone mineral density in adult women with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92(12), 4643–4649 (2007). doi:10.1210/jc.2007-0744

    Article  CAS  PubMed  Google Scholar 

  64. H. Falhammar, H. Filipsson Nystrom, A. Wedell, M. Thoren, Cardiovascular risk, metabolic profile, and body composition in adult males with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur. J. Endocrinol. 164(2), 285–293 (2011). doi:10.1530/EJE-10-0877

    Article  CAS  PubMed  Google Scholar 

  65. H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, A. Nordenskjold, K. Hagenfeldt, M. Thoren, Increased liver enzymes in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. J. 56(4), 601–608 (2009)

    Article  CAS  PubMed  Google Scholar 

  66. H. Falhammar, L. Frisen, A. Linden Hirschberg, C. Norrby, C. Almqvist, A. Nordenskjold, A. Nordenstrom, Increased cardiovascular and metabolic morbidity in patients with 21-hydroxylase deficiency: a Swedish population-based national cohort study. J. Clin. Endocrinol. Metab. (2015). doi:10.1210/JC.2015-2093

    PubMed  Google Scholar 

  67. H. Falhammar, H.F. Nystrom, U. Ekstrom, S. Granberg, A. Wedell, M. Thoren, Fertility, sexuality and testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia. Eur. J. Endocrinol. 166(3), 441–449 (2012). doi:10.1530/EJE-11-0828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. U. Nygren, H.F. Nystrom, H. Falhammar, K. Hagenfeldt, A. Nordenskjold, M. Sodersten, Voice problems due to virilization in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. 79(6), 859–866 (2013). doi:10.1111/cen.12226

    Article  CAS  Google Scholar 

  69. A. Thil’en, A. Nordenstrom, L. Hagenfeldt, U. von Dobeln, C. Guthenberg, A. Larsson, Benefits of neonatal screening for congenital adrenal hyperplasia (21-hydroxylase deficiency) in Sweden. Pediatrics 101(4), E11 (1998)

    Article  PubMed  Google Scholar 

  70. N.L. Heather, S.N. Seneviratne, D. Webster, J.G. Derraik, C. Jefferies, J. Carll, Y. Jiang, W.S. Cutfield, P.L. Hofman, Newborn screening for congenital adrenal hyperplasia in New Zealand, 1994–2013. J. Clin. Endocrinol. Metab. 100(3), 1002–1008 (2015). doi:10.1210/jc.2014-3168

    Article  PubMed  Google Scholar 

  71. S. Pang, J. Hotchkiss, A.L. Drash, L.S. Levine, M.I. New, Microfilter paper method for 17 alpha-hydroxyprogesterone radioimmunoassay: its application for rapid screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 45(5), 1003–1008 (1977). doi:10.1210/jcem-45-5-1003

    Article  CAS  PubMed  Google Scholar 

  72. C.Z. Minutti, J.M. Lacey, M.J. Magera, S.H. Hahn, M. McCann, A. Schulze, D. Cheillan, C. Dorche, D.H. Chace, J.F. Lymp, D. Zimmerman, P. Rinaldo, D. Matern, Steroid profiling by tandem mass spectrometry improves the positive predictive value of newborn screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 89(8), 3687–3693 (2004). doi:10.1210/jc.2003-032235

    Article  CAS  PubMed  Google Scholar 

  73. J.Y. Seo, H.D. Park, J.W. Kim, H.J. Oh, J.S. Yang, Y.S. Chang, W.S. Park, S.Y. Lee, Steroid profiling for congenital adrenal hyperplasia by tandem mass spectrometry as a second-tier test reduces follow-up burdens in a tertiary care hospital: a retrospective and prospective evaluation. J. Perinat. Med. 42(1), 121–127 (2014). doi:10.1515/jpm-2013-0154

    CAS  PubMed  Google Scholar 

  74. A. Nordenstrom, S. Ahmed, J. Jones, M. Coleman, D.A. Price, P.E. Clayton, C.M. Hall, Female preponderance in congenital adrenal hyperplasia due to CYP21 deficiency in England: implications for neonatal screening. Horm. Res. 63(1), 22–28 (2005). doi:10.1159/000082896

    Article  CAS  PubMed  Google Scholar 

  75. B.A. Tarini, The value of time in assessing the effectiveness of newborn screening for congenital adrenal hyperplasia. JAMA Pediatr. 168(6), 515–516 (2014). doi:10.1001/jamapediatrics.2014.246

    Article  PubMed  Google Scholar 

  76. T. Torresani, A. Biason-Lauber, Congenital adrenal hyperplasia: diagnostic advances. J. Inherit. Metab. Dis. 30(4), 563–575 (2007). doi:10.1007/s10545-007-0696-6

    Article  CAS  PubMed  Google Scholar 

  77. A. Nordenstrom, A. Thilen, L. Hagenfeldt, A. Larsson, A. Wedell, Genotyping is a valuable diagnostic complement to neonatal screening for congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 84(5), 1505–1509 (1999). doi:10.1210/jcem.84.5.5651

    CAS  PubMed  Google Scholar 

  78. A. Nordenstrom, A. Wedell, L. Hagenfeldt, C. Marcus, A. Larsson, Neonatal screening for congenital adrenal hyperplasia: 17-hydroxyprogesterone levels and CYP21 genotypes in preterm infants. Pediatrics 108(4), E68 (2001)

    Article  CAS  PubMed  Google Scholar 

  79. H.J. van der Kamp, C.G. Oudshoorn, B.H. Elvers, M. van Baarle, B.J. Otten, J.M. Wit, P.H. Verkerk, Cutoff levels of 17-alpha-hydroxyprogesterone in neonatal screening for congenital adrenal hyperplasia should be based on gestational age rather than on birth weight. J. Clin. Endocrinol. Metab. 90(7), 3904–3907 (2005). doi:10.1210/jc.2004-2136

    Article  PubMed  Google Scholar 

  80. C. Rossi, L. Calton, G. Hammond, H.A. Brown, A.M. Wallace, P. Sacchetta, M. Morris, Serum steroid profiling for congenital adrenal hyperplasia using liquid chromatography-tandem mass spectrometry. Clin. Chim. Acta 411(3–4), 222–228 (2010). doi:10.1016/j.cca.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  81. K. Sarafoglou, K. Banks, A. Gaviglio, A. Hietala, M. McCann, W. Thomas, Comparison of one-tier and two-tier newborn screening metrics for congenital adrenal hyperplasia. Pediatrics 130(5), e1261–e1268 (2012). doi:10.1542/peds.2012-1219

    Article  PubMed  Google Scholar 

  82. K. Sarafoglou, K. Banks, J. Kyllo, S. Pittock, W. Thomas, Cases of congenital adrenal hyperplasia missed by newborn screening in Minnesota. JAMA 307(22), 2371–2374 (2012). doi:10.1001/jama.2012.5281

    Article  CAS  PubMed  Google Scholar 

  83. F. Schreiner, C. Brack, K. Salzgeber, W. Vorhoff, J. Woelfle, B. Gohlke, False negative 17-hydroxyprogesterone screening in children with classical congenital adrenal hyperplasia. Eur. J. Pediatr. 167(4), 479–481 (2008). doi:10.1007/s00431-007-0505-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Magnus Bergvall Foundation, the Swedish Endocrine Society, Karolinska Institutet, and the Stockholm County Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Falhammar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falhammar, H., Wedell, A. & Nordenström, A. Biochemical and genetic diagnosis of 21-hydroxylase deficiency. Endocrine 50, 306–314 (2015). https://doi.org/10.1007/s12020-015-0731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0731-6

Keywords

Navigation