Skip to main content
Log in

Type 2 Diabetes and Bone Disease

  • Review Article
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Diabetes and osteoporosis are age-related conditions contributing to the burgeoning burden of health care as life expectancy increases. Over the past 30 years, evidence has emerged indicating that these two conditions are related. Diabetes is well recognized to affect bone health, contributing to decreased bone formation, increased bone marrow adiposity, and heightened risk of fracture. Age-related inflammation and oxidative stress promote the development of osteoporosis primarily by reducing bone formation, and they are augmented in diabetes. There is an association between reduced bone remodeling and increased incidence of type 2 diabetes mellitus (T2DM). Although both men and women are affected, more research on this relationship has been conducted in older women, likely due to a higher burden of disease. Mounting evidence demonstrates the influence of bone remodeling on glucose regulation via bone-derived factors. These factors include fibroblast growth factor 23 (FGF-23) and osteocalcin, which affect pancreatic beta cell proliferation; insulin expression and secretion; and storage and release of glucose from the liver, skeletal muscle, and adipose tissue. This review will highlight the inter-connectivity of diabetes and osteoporosis, focusing on the clinical relevance of diagnosing and treating bone loss early and appropriately in individuals with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet. 2016;387:1513–30.

    Article  Google Scholar 

  2. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:465–75.

    Article  PubMed  Google Scholar 

  3. Massera D, Biggs ML, Walker MD, Mukamal KJ, Ix JH, Djousse L, et al. Biochemical markers of bone turnover and risk of incident diabetes in older women: the cardiovascular health study. Diabetes Care. 2018;41:1901–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonnet N. Bone-derived factors: a new gateway to regulate glycemia. Calcif Tissue Int. 2017;100:174–83.

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86:32–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, et al. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab. 2006;91:3404–10.

    Article  CAS  PubMed  Google Scholar 

  7. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166:495–505.

    Article  PubMed  Google Scholar 

  8. Fan Y, Wei F, Lang Y, Liu Y. Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int. 2016;27:219–28.

    Article  CAS  PubMed  Google Scholar 

  9. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int. 2007;18:427–44.

    Article  CAS  PubMed  Google Scholar 

  10. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27:301–8.

    Article  PubMed  Google Scholar 

  11. Leslie WD, Rubin MR, Schwartz AV, Kanis JA. Type 2 diabetes and bone. J Bone Miner Res. 2012;27:2231–7.

    Article  PubMed  Google Scholar 

  12. Schwartz AV. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305:2184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image: TRABECULAR BONE SCORE. J Bone Miner Res. 2014;29:518–30.

    Article  PubMed  Google Scholar 

  14. Harvey NC, Glüer CC, Binkley N, McCloskey EV, Brandi M-L, Cooper C, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX: TBS IN FRACTURE RISK PREDICTION AND RELATIONSHIP TO FRAX. J Bone Miner Res. 2016;31:940–8.

    Article  PubMed  Google Scholar 

  16. Leslie WD, Aubry-Rozier B, Lamy O, Hans D, for the Manitoba Bone Density Program. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98:602–9.

    Article  CAS  PubMed  Google Scholar 

  17. Dhaliwal R, Cibula D, Ghosh C, Weinstock RS, Moses AM. Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int. 2014;25:1969–73.

    Article  CAS  PubMed  Google Scholar 

  18. Kim JH, Choi HJ, Ku EJ, Kim KM, Kim SW, Cho NH, et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab. 2015;100:475–82.

    Article  CAS  PubMed  Google Scholar 

  19. Kanis JA, Cooper C, Rizzoli R, Reginster J-Y. Scientific advisory Board of the European Society for clinical and economic aspects of osteoporosis (ESCEO) and the committees of scientific advisors and National Societies of the international osteoporosis foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30:3–44.

    Article  CAS  PubMed  Google Scholar 

  20. Camacho PM, Petak SM, Binkley N, Diab DL, Eldeiry LS, Farooki A, et al. American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 update. Endocr Pract. 2020;26:1–46.

    Article  PubMed  Google Scholar 

  21. Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18:274–86.

    Article  PubMed  Google Scholar 

  22. Manske SL, Zhu Y, Sandino C, Boyd SK. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone. 2015;79:213–21.

    Article  CAS  PubMed  Google Scholar 

  23. Link TM. Osteoporosis imaging: state of the art advanced imaging. Radiology. 2012;263:3–17.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rubin MR, Patsch JM. Assessment of bone turnover and bone quality in type 2 diabetic bone disease: current concepts and future directions. Bone Res. 2016;4:16001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28:313–24.

    Article  PubMed  Google Scholar 

  26. Dhaliwal R, Rosen C. Type 2 diabetes and aging: a not so sweet scenario for bone. Horm Metab Res. 2016;48:771–8.

    Article  CAS  PubMed  Google Scholar 

  27. Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:5045–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dobnig H, Piswanger-Sölkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A, et al. Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab. 2006;91:3355–63.

    Article  CAS  PubMed  Google Scholar 

  29. Ardawi M-SM, Akhbar DH, AlShaikh A, Ahmed MM, Qari MH, Rouzi AA, et al. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone. 2013;56:355–62.

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto M, Yamaguchi T, Nawata K, Yamauchi M, Sugimoto T. Decreased PTH levels accompanied by low bone formation are associated with vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2012;97:1277–84.

    Article  CAS  PubMed  Google Scholar 

  31. Gaudio A, Privitera F, Battaglia K, Torrisi V, Sidoti MH, Pulvirenti I, et al. Sclerostin levels associated with inhibition of the wnt/β-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:3744–50.

    Article  CAS  PubMed  Google Scholar 

  32. Krakauer JC, Mckenna MJ, Fenn Buderer N, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes. 1995;44:775–82.

    Article  CAS  PubMed  Google Scholar 

  33. Dhaliwal R, Hans D, Hattersley G, Mitlak B, Fitzpatrick LA, Wang Y, et al. Abaloparatide in postmenopausal women with osteoporosis and type 2 diabetes: a post hoc analysis of the ACTIVE study. JBMR Plus [Internet]. 2020 [cited 2022 Feb 14];4. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm4.10346.

  34. Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes: BONE QUALITY IN WOMEN WITH T2D. J Bone Miner Res. 2014;29:787–95.

    Article  PubMed  Google Scholar 

  35. Li Z, Frey JL, Wong GW, Faugere M-C, Wolfgang MJ, Kim JK, et al. Glucose transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology. 2016;157:4094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Esen E, Long F. Aerobic glycolysis in osteoblasts. Curr Osteoporos Rep. 2014;12:433–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Karner CM, Long F. Glucose metabolism in bone. Bone. 2018;115:2–7.

    Article  CAS  PubMed  Google Scholar 

  38. Komarova SV, Ataullakhanov FI, Globus RK. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol-Cell Physiol. 2000;279:C1220–9.

    Article  CAS  PubMed  Google Scholar 

  39. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Schmidt AM, editor. Circ Res. 2010;107:1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Motyl KJ, Guntur AR, Carvalho AL, Rosen CJ. Energy metabolism of bone. Toxicol Pathol. 2017;45:887–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, et al. High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone. 2008;42:1122–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lemma S, Sboarina M, Porporato PE, Zini N, Sonveaux P, Di Pompo G, et al. Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol. 2016;79:168–80.

    Article  CAS  PubMed  Google Scholar 

  43. Xu F, Ye Y, Dong Y, Guo F, Chen A, Huang S. Inhibitory effects of high glucose/insulin environment on osteoclast formation and resorption in vitro. J Huazhong Univ Sci Technolog Med Sci. 2013;33:244–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res. 2007;22:560–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ding K-H, Wang Z-Z, Hamrick MW, Deng Z-B, Zhou L, Kang B, et al. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun. 2006;340:1091–7.

    Article  CAS  PubMed  Google Scholar 

  46. Reni C, Mangialardi G, Meloni M, Madeddu P. Diabetes stimulates osteoclastogenesis by acidosis-induced activation of transient receptor potential cation channels. Sci Rep. 2016;6:30639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bai X, Lu D, Bai J, Zheng H, Ke Z, Li X, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochem Biophys Res Commun. 2004;314:197–207.

    Article  CAS  PubMed  Google Scholar 

  48. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res. 2009;24:702–9.

    Article  CAS  PubMed  Google Scholar 

  49. Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006;17:1514–23.

    Article  CAS  PubMed  Google Scholar 

  50. Meerwaldt R, Links T, Zeebregts C, Tio R, Hillebrands J-L, Smit A. The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes. Cardiovasc Diabetol. 2008;7:29.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vlassara H, Striker GE. Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol Metab Clin North Am. 2013;42:697–719.

    Article  PubMed  Google Scholar 

  52. Brings S, Fleming T, Freichel M, Muckenthaler M, Herzig S, Nawroth P. Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention. Int J Mol Sci. 2017;18:984.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kanazawa I. Interaction between bone and glucose metabolism [Review]. Endocr J. 2017;64:1043–53.

    Article  CAS  PubMed  Google Scholar 

  54. Kanazawa I, Sugimoto T. Diabetes mellitus-induced bone fragility. Intern Med. 2018;57:2773–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Farlay D, Armas LA, Gineyts E, Akhter MP, Recker RR, Boivin G. Nonenzymatic glycation and degree of mineralization are higher in bone from fractured patients with type 1 diabetes mellitus: TYPE 1 DIABETES AND HUMAN BONE MATRIX. J Bone Miner Res. 2016;31:190–5.

    Article  CAS  PubMed  Google Scholar 

  56. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab. 2009;94:2380–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu J-L, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest. 2002;110:771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H, et al. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone. 1998;22:17–23.

    Article  CAS  PubMed  Google Scholar 

  59. McCarthy AD, Etcheverry SB, Cortizo AM. Effect of advanced glycation endproducts on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development. Acta Diabetol. 2001;38:113–22.

    Article  CAS  PubMed  Google Scholar 

  60. Miyake H, Kanazawa I, Sugimoto T. Decreased serum insulin-like growth factor-I is a risk factor for non-vertebral fractures in diabetic postmenopausal women. Intern Med. 2017;56:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T. Serum insulin-like growth factor-I level is associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int. 2007;18:1675–81.

    Article  CAS  PubMed  Google Scholar 

  62. Katayama Y, Akatsu T, Yamamoto M, Kugai N, Nagata N. Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res. 1996;11:931–7.

    Article  CAS  PubMed  Google Scholar 

  63. Takagi M, Kasayama S, Yamamoto T, Motomura T, Hashimoto K, Yamamoto H, et al. Advanced glycation endproducts stimulate interleukin-6 production by human bone-derived cells. J Bone Miner Res. 1997;12:439–46.

    Article  CAS  PubMed  Google Scholar 

  64. Valcourt U, Merle B, Gineyts E, Viguet-Carrin S, Delmas PD, Garnero P. Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem. 2007;282:5691–703.

    Article  CAS  PubMed  Google Scholar 

  65. Moseley KF. Type 2 diabetes and bone fractures. Curr Opin Endocrinol Diabetes Obes. 2012;19:128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 2013;25:2185–97.

    Article  CAS  PubMed  Google Scholar 

  67. Park J, Lee N, Lee S. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells [Internet]. 2017 [cited 2021 Nov 28]; Available from: http://www.molcells.org/journal/view.html?doi=10.14348/molcells.2017.0225.

  68. Cai Z, Yang B, Shi Y, Zhang W, Liu F, Zhao W, et al. High glucose downregulates the effects of autophagy on osteoclastogenesis via the AMPK/mTOR/ULK1 pathway. Biochem Biophys Res Commun. 2018;503:428–35.

    Article  CAS  PubMed  Google Scholar 

  69. Catalfamo D, Britten T, Storch D, Calderon N, Sorenson H, Wallet S. Hyperglycemia induced and intrinsic alterations in type 2 diabetes-derived osteoclast function. Oral Dis. 2013;19:303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thrailkill KM, Lumpkin CK, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol-Endocrinol Metab. 2005;289:E735–45.

    Article  CAS  PubMed  Google Scholar 

  71. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142:309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Y, Liu H, Sato Y. The association between the serum C-peptide level and bone mineral density. He B, editor. PLoS ONE. 2013;8:e83107.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ferro Y, Russo C, Russo D, Gazzaruso C, Coppola A, Gallotti P, et al. Association between low C-peptide and fragility fractures in postmenopausal women without diabetes. J Endocrinol Invest. 2017;40:1091–8.

    Article  CAS  PubMed  Google Scholar 

  75. Pujia A, Gazzaruso C, Montalcini T. An update on the potential role of C-peptide in diabetes and osteoporosis. Endocrine. 2017;58:408–12.

    Article  CAS  PubMed  Google Scholar 

  76. Bartell SM, Kim H-N, Ambrogini E, Han L, Iyer S, Serra Ucer S, et al. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun. 2014;5:3773.

    Article  PubMed  Google Scholar 

  77. Jiao H, Xiao E, Graves DT. Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep. 2015;13:327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434:514–20.

    Article  CAS  PubMed  Google Scholar 

  79. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.

    Article  CAS  PubMed  Google Scholar 

  80. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay. Cell. 2000;100:197–207.

    Article  CAS  PubMed  Google Scholar 

  81. Reid IR, Baldock PA, Cornish J. Effects of leptin on the skeleton. Endocr Rev. 2018;39:938–59.

    Article  PubMed  Google Scholar 

  82. Reid IR, Richards JB. Adipokine effects on bone. Clin Rev Bone Miner Metab. 2009;7:240–8.

    Article  CAS  Google Scholar 

  83. Ozata M. Different presentation of bone mass in mice and humans with congenital leptin deficiency. J Clin Endocrinol Metab. 2002;87:951–951.

    Article  CAS  PubMed  Google Scholar 

  84. Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, et al. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women: Leptin, BMD and vertebral fractures. Clin Endocrinol (Oxf). 2001;55:341–7.

    Article  CAS  PubMed  Google Scholar 

  85. Mpalaris V, Anagnostis P, Anastasilakis AD, Goulis DG, Doumas A, Iakovou I. Serum leptin, adiponectin and ghrelin concentrations in post-menopausal women: Is there an association with bone mineral density? Maturitas. 2016;88:32–6.

    Article  CAS  PubMed  Google Scholar 

  86. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes 1. Endocrinology. 1999;140:1630–8.

    Article  CAS  PubMed  Google Scholar 

  87. Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine. 2018;112:116–31.

    Article  CAS  PubMed  Google Scholar 

  88. Kadowaki T. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116:1784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dong X, Bi L, He S, Meng G, Wei B, Jia S, et al. FFAs-ROS-ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. Biochimie. 2014;101:123–31.

    Article  CAS  PubMed  Google Scholar 

  90. Kushwaha P, Wolfgang MJ, Riddle RC. Fatty acid metabolism by the osteoblast. Bone. 2018;115:8–14.

    Article  CAS  PubMed  Google Scholar 

  91. Murray C. Impact of diabetes mellitus on bone health. Int J Mol Sci. 2019;20:4873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol Metab. 2021;46:101102.

    Article  CAS  PubMed  Google Scholar 

  93. Aroda VR. A review of GLP-1 receptor agonists: Evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes Metab. 2018;20:22–33.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang YS, Weng WY, Xie BC, Meng Y, Hao YH, Liang YM, et al. Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials. Osteoporos Int. 2018;29:2639–44.

    Article  CAS  PubMed  Google Scholar 

  95. Cheng L, Hu Y, Li Y, Cao X, Bai N, Lu T, et al. Glucagon‐like peptide‐1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: A meta‐analysis of randomized controlled trials. Diabetes Metab Res Rev [Internet]. 2019 [cited 2022 Mar 5];35. Available from: https://onlinelibrary.wiley.com/doi/10.1002/dmrr.3168.

  96. Su B, Sheng H, Zhang M, Bu L, Yang P, Li L, et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine. 2015;48:107–15.

    Article  CAS  PubMed  Google Scholar 

  97. Luo G, Liu H, Lu H. Glucagon-like peptide-1(GLP-1) receptor agonists: potential to reduce fracture risk in diabetic patients?: GLP-1 RA: potential to reduce fracture risk in diabetic patients? Br J Clin Pharmacol. 2016;81:78–88.

    Article  PubMed  Google Scholar 

  98. Driessen JHM, van Onzenoort HAW, Starup-Linde J, Henry R, Burden AM, Neef C, et al. Use of glucagon-like-peptide 1 receptor agonists and risk of fracture as compared to use of other anti-hyperglycemic drugs. Calcif Tissue Int. 2015;97:506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nuche-Berenguer B, Moreno P, Esbrit P, Dapía S, Caeiro JR, Cancelas J, et al. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int. 2009;84:453–61.

    Article  CAS  PubMed  Google Scholar 

  100. Wen B, Zhao L, Zhao H, Wang X. Liraglutide exerts a bone‑protective effect in ovariectomized rats with streptozotocin‑induced diabetes by inhibiting osteoclastogenesis. Exp Ther Med [Internet]. 2018 [cited 2022 Mar 11]; Available from: http://www.spandidos-publications.com/10.3892/etm.2018.6043.

  101. Yu J, Shi Y-C, Ping F, Li W, Zhang H-B, He S-L, et al. Liraglutide inhibits osteoclastogenesis and improves bone loss by downregulating Trem2 in female type 1 diabetic mice: findings from transcriptomics. Front Endocrinol. 2021;12:763646.

    Article  Google Scholar 

  102. Egger A, Kraenzlin ME, Meier C. Effects of incretin-based therapies and SGLT2 inhibitors on skeletal health. Curr Osteoporos Rep. 2016;14:345–50.

    Article  PubMed  Google Scholar 

  103. Mamza J, Marlin C, Wang C, Chokkalingam K, Idris I. DPP-4 inhibitor therapy and bone fractures in people with Type 2 diabetes – A systematic review and meta-analysis. Diabetes Res Clin Pract. 2016;116:288–98.

    Article  CAS  PubMed  Google Scholar 

  104. Josse RG, Majumdar SR, Zheng Y, Adler A, Bethel MA, Buse JB, et al. Sitagliptin and risk of fractures in type 2 diabetes: Results from the TECOS trial: JOSSE et al. Diabetes Obes Metab. 2017;19:78–86.

    Article  CAS  PubMed  Google Scholar 

  105. Mu W, Wang Z, Ma C, Jiang Y, Zhang N, Hu K, et al. Metformin promotes the proliferation and differentiation of murine preosteoblast by regulating the expression of sirt6 and oct4. Pharmacol Res. 2018;129:462–74.

    Article  CAS  PubMed  Google Scholar 

  106. Jiang L-L, Liu L. Effect of metformin on stem cells: Molecular mechanism and clinical prospect. World J Stem Cells. 2020;12:1455–73.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yang X, Kord-Varkaneh H, Talaei S, Clark CCT, Zanghelini F, Tan SC, et al. The influence of metformin on IGF-1 levels in humans: a systematic review and meta-analysis. Pharmacol Res. 2020;151:104588.

    Article  CAS  PubMed  Google Scholar 

  108. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, et al. Rosiglitazone-associated fractures in type 2 diabetes. Diabetes Care. 2008;31:845–51.

    Article  CAS  PubMed  Google Scholar 

  109. Colhoun HM, Livingstone SJ, Looker HC, Morris AD, Wild SH, Lindsay RS, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia. 2012;55:2929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Salari-Moghaddam A, Sadeghi O, Keshteli AH, Larijani B, Esmaillzadeh A. Metformin use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int. 2019;30:1167–73.

    Article  CAS  PubMed  Google Scholar 

  111. Oh TK, Song I-A. Metformin therapy and hip fracture risk among patients with type II diabetes mellitus: a population-based cohort study. Bone. 2020;135:115325.

    Article  CAS  PubMed  Google Scholar 

  112. Bazelier MT. Risk of fracture with thiazolidinediones: an individual patient data meta-analysis. Front Endocrinol [Internet]. 2013 [cited 2022 Mar 6]; Available from: http://journal.frontiersin.org/article/10.3389/fendo.2013.00011/abstract.

  113. Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int. 2008;19:129–37.

    Article  CAS  PubMed  Google Scholar 

  114. Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR. Use of Thiazolidinediones and fracture risk. Arch Intern Med. 2008;168:820.

    Article  CAS  PubMed  Google Scholar 

  115. Brietzke SA. Oral antihyperglycemic treatment options for type 2 diabetes mellitus. Med Clin North Am. 2015;99:87–106.

    Article  PubMed  Google Scholar 

  116. Ma P, Gu B, Xiong W, Tan B, Geng W, Li J, et al. Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3K/Akt/eNOS pathway in a high glucose microenvironment. Beltrami AP, editor. PLoS ONE. 2014;9:e112243.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Guney E, Kisakol G, Oge A, Yilmaz C, Kabalak T. Effects of insulin and sulphonylureas on insulin-like growth factor-I levels in streptozotocin-induced diabetic rats. Neuro Endocrinol Lett. 2002;23:437–9.

    CAS  PubMed  Google Scholar 

  118. Tao Y, E M, Shi J, Zhang Z. Sulfonylureas use and fractures risk in elderly patients with type 2 diabetes mellitus: a meta-analysis study. Aging Clin Exp Res. 2021;33:2133–9.

    Article  PubMed  Google Scholar 

  119. Starup-Linde J, Gregersen S, Frost M, Vestergaard P. Use of glucose-lowering drugs and risk of fracture in patients with type 2 diabetes. Bone. 2017;95:136–42.

    Article  CAS  PubMed  Google Scholar 

  120. Gilbert MP, Pratley RE. The impact of diabetes and diabetes medications on bone health. Endocr Rev. 2015;36:194–213.

    Article  CAS  PubMed  Google Scholar 

  121. Lecka-Czernik B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia. 2017;60:1163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mughal A, Kumar D, Vikram A. Effects of Thiazolidinediones on metabolism and cancer: Relative influence of PPARγ and IGF-1 signaling. Eur J Pharmacol. 2015;768:217–25.

    Article  CAS  PubMed  Google Scholar 

  123. Stage TB, Christensen M-MH, Jørgensen NR, Beck-Nielsen H, Brøsen K, Gram J, et al. Effects of metformin, rosiglitazone and insulin on bone metabolism in patients with type 2 diabetes. Bone. 2018;112:35–41.

    Article  CAS  PubMed  Google Scholar 

  124. Ma R, Wang L, Zhao B, Liu C, Liu H, Zhu R, et al. Diabetes perturbs bone microarchitecture and bone strength through regulation of Sema3A/IGF-1/β-Catenin in rats. Cell Physiol Biochem. 2017;41:55–66.

    Article  CAS  PubMed  Google Scholar 

  125. Degen AS, Krynytska IY, Kamyshnyi AM. Changes in the transcriptional activity of the entero-insular axis genes in streptozotocin-induced diabetes and after the administration of TNF-α non-selective blockers. Endocr Regul. 2020;54:160–71.

    Article  PubMed  Google Scholar 

  126. Lee RH, Sloane R, Pieper C, Lyles KW, Adler RA, Houtven C, et al. Glycemic control and insulin treatment alter fracture risk in older men with type 2 diabetes mellitus. J Bone Miner Res. 2019;34:2045–51.

    Article  CAS  PubMed  Google Scholar 

  127. Losada-Grande E, Hawley S, Soldevila B, Martinez-Laguna D, Nogues X, Diez-Perez A, et al. Insulin use and excess fracture risk in patients with type 2 diabetes: a propensity-matched cohort analysis. Sci Rep. 2017;7:3781.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Corrao G, Monzio Compagnoni M, Ronco R, Merlino L, Ciardullo S, Perseghin G, et al. Is switching from oral antidiabetic therapy to insulin associated with an increased fracture risk? Clin Orthop. 2020;478:992–1003.

    Article  PubMed  Google Scholar 

  129. Meier C, Schwartz AV, Egger A, Lecka-Czernik B. Effects of diabetes drugs on the skeleton. Bone. 2016;82:93–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma Lopez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, N., Cohen, S.M. & Emanuele, M. Type 2 Diabetes and Bone Disease. Clinic Rev Bone Miner Metab 21, 21–31 (2023). https://doi.org/10.1007/s12018-023-09288-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-023-09288-7

Keywords

Navigation