Skip to main content

Advertisement

Log in

Effect of GLP-1 Treatment on Bone Turnover in Normal, Type 2 Diabetic, and Insulin-Resistant States

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

It has been suggested that hormones released after nutrient absorption, such as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide 2 (GLP-2), could be responsible for changes in bone resorption. However, information about the role of GLP-1 in this regard is scanty. Diabetes-related bone loss occurs as a consequence of poor control of glucose homeostasis, but the relationship between osteoporosis and type 2 diabetes remains unclear. Since GLP-1 is decreased in the latter condition, we evaluated some bone characteristics in streptozotocin-induced type 2 diabetic (T2D) and fructose-induced insulin-resistant (IR) rat models compared to normal (N) and the effect of GLP-1 or saline (control) treatment (3 days by osmotic pump). Blood was taken before and after treatment for plasma measurements; tibiae and femora were collected for gene expression of bone markers (RT-PCR) and structure (μCT) analysis. Compared to N, plasma glucose and insulin were, respectively, higher and lower in T2D; osteocalcin (OC) and tartrate-resistant alkaline phosphatase 5b were lower; phosphate in IR showed a tendency to be higher; PTH was not different in T2D and IR; all parameters were unchanged after GLP-1 infusion. Bone OC, osteoprotegerin (OPG) and RANKL mRNA were lower in T2D and IR; GLP-1 increased OC and OPG in all groups and RANKL in T2D. Compared to N, trabecular bone parameters showed an increased degree of anisotropy in T2D and IR, which was reduced after GLP-1. These findings show an insulin-independent anabolic effect of GLP-1 and suggest that GLP-1 could be a useful therapeutic agent for improving the deficient bone formation and bone structure associated with glucose intolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Creutzfeldt W (2001) The entero-insular axis in type 2 diabetes. Incretins as therapeutic agents. Exp Clin Endocrinol Diabetes 109:S288–S303

    Article  PubMed  CAS  Google Scholar 

  2. Valverde I, Morales M, Clemente F, López-Delgado MI, Delgado E, Perea A, Villanueva-Peñacarrillo ML (1994) Glucagon-like peptide-1: a potent glycogenic hormone. FEBS Lett 349:313–316

    Article  PubMed  CAS  Google Scholar 

  3. Villanueva-Peñacarrillo ML, Alcántara A, Clemente F, Delgado E, Valverde I (1994) Potent glycogenic effect of GLP-1 (7–36) amide in rat skeletal muscle. Diabetologia 37:1163–1166

    Article  PubMed  Google Scholar 

  4. Villanueva-Peñacarrillo ML, Puente J, Redondo A, Clemente F, Valverde I (2001) Effect of GLP-1 treatment on GLUT2 and GLUT4 expression in NIDDM and IDDM rats. Endocrine 15:241–248

    Article  PubMed  Google Scholar 

  5. Sancho V, Trigo MV, González N, Valverde I, Malaisse WJ, Villanueva-Peñacarrillo ML (2005) Effects of GLP-1 and exendins on kinase activity, 2-deoxy-d-glucose transport, lipolysis and lipogenesis in adipocytes from normal and streptozotocin-induced type 2 diabetic rats. J Mol Endocrinol 35:27–38

    Article  PubMed  CAS  Google Scholar 

  6. Villanueva-Peñacarrillo ML, Delgado E, Trapote MA, Alcántara AI, Clemente F, Luque MA, Perea A, Valverde I (1995) Glucagon-like peptide-1 binding to rat hepatic membranes. J Endocrinol 146:183–189

    Article  PubMed  Google Scholar 

  7. Delgado E, Luque MA, Alcántara A, Trapote MA, Clemente F, Galera C, Valverde I, Villanueva-Peñacarrillo ML (1995) Glucagon-like peptide-1 binding to rat skeletal muscle. Peptides 16:225–229

    Article  PubMed  CAS  Google Scholar 

  8. Yang H, Egan JM, Wang Y, Moyes D, Roth J, Montrose MH, Montrose-Rafizadeh C (1998) GLP-1 action in L6 myotubes is via a receptor different from the pancreatic GLP-1 receptor. Am J Physiol 275:675–683

    Google Scholar 

  9. Thorens B (1992) Expression clonning of the pancreatic beta-cell receptor for the gluco-incretin hormone glucagon-like peptide-1. Proc Natl Acad Sci USA 89:8641–8645

    Article  PubMed  CAS  Google Scholar 

  10. Ruiz-Grande C, Alarcón C, Mérida E, Valverde I (1992) Lipolytic action of glucagon-like peptides in isolated rat adipocytes. Peptides 13:13–16

    Article  PubMed  CAS  Google Scholar 

  11. Villanueva-Peñacarrillo ML, Márquez L, González N, Díaz-Miguel M, Valverde I (2001) Effect of GLP-1 on lipid metabolism in human adipocytes. Horm Metab Res 33:73–77

    Article  PubMed  Google Scholar 

  12. Márquez L, Trapote MA, Luque MA, Valverde I, Villanueva-Peñacarrilo ML (1998) Inositolphosphoglycans possibly mediate the effects of glucagon-like peptide 1(7–36) amide on rat liver and adipose tissue. Cell Biochem Funct 16:51–56

    Article  PubMed  Google Scholar 

  13. Redondo A, Trigo V, Acitores A, Valverde I, Villanueva-Peñacarrillo ML (2003) Cell signalling of the GLP-1 action in rat liver. Mol Cell Endocrinol 204:43–50

    Article  PubMed  CAS  Google Scholar 

  14. Acitores A, González N, Sancho V, Valverde I, Villanueva-Peñacarrillo ML (2004) Cell signalling of the glucagón-like peptide 1 action in rat skeletal muscle. J Endocrinol 180:389–398

    Article  PubMed  CAS  Google Scholar 

  15. Larsen PJ, Holst JJ (2005) Glucagon-related peptide 1 (GLP-1): hormone and neurotransmitter. Regul Pept 15:97–107

    Article  CAS  Google Scholar 

  16. Nikolaidis JA, Mankas S, Sokos GG, MIska G, Shah A, Elahi D, Shannon RP (2004) Effects of glucagon-like peptide in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109:962–965

    Article  PubMed  CAS  Google Scholar 

  17. Inzerillo A, Epstein S (2004) Osteoporosis and diabetes mellitus. Rev Endocrine Metab Disord 5:261–268

    Article  Google Scholar 

  18. Clowes JA, Khosla S, Eastell R (2005) Perspective potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res 9:1497–1506

    Article  CAS  Google Scholar 

  19. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EE, Byrjalsen I, Krarup T, Holst JJ, Christiansen C (2003) Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189

    Article  PubMed  CAS  Google Scholar 

  20. Bollag RJ, Zhong Q, Phillips P, Min L, Zhong L, Cameron R, Mulloy AL, Rasmussen H, Qin F, Ding KH, Isales CM (2000) Osteoblasts-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 141:1228–1235

    Article  PubMed  CAS  Google Scholar 

  21. Xie D, Zhong Q, Ding KH, Cheng H, Williams S, Correa D, Bollag WB, Bollag RJ, Insogna K, Troiano N, Coady C, Hamrick M, Isales CM (2007) Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone 40:1352–1360

    Article  PubMed  CAS  Google Scholar 

  22. Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N, Tanaka K, Drucker DJ, Seino Y, Inagaki N (2008) The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149:574–579

    Article  PubMed  CAS  Google Scholar 

  23. Levin ME, Boisseau VC, Avioli LV (1976) Effects of diabetes mellitus on bone mass in juvenile adult-onset diabetes. N Engl J Med 294:241–245

    PubMed  CAS  Google Scholar 

  24. Pl VanDaele, Stolk RP, Burguer H, Algra D, Grobee DE, Hofman A, Birkenhäger JC, Pols HA (1995) Bone density in non-insulin-dependent diabetes mellitus: the Rotterdam study. Ann Intern Med 122:409–414

    Google Scholar 

  25. Hirano Y, Kishimoto H, Hagino H, Teshima R (1999) The change of bone mineral density in secondary osteoporosis and vertebral fracture incidence. J Bone Miner Metab 17:119–124

    Article  PubMed  CAS  Google Scholar 

  26. Portha B, Picon L, Rosselin G (1979) Chemical diabetes in the adult rat as the spontaneous evolution of neonatal diabetes. Diabetologia 17:371–377

    Article  PubMed  CAS  Google Scholar 

  27. Iwase M, Kikuchi M, Nunoi K, Wakisaka M, Maki Y, Sadoshima S, Fujishima M (1987) Blood pressure changes in spontaneously hypertensive and normotensive rats with neonatal streptozotocin induced type 2 diabetes. Clin Exp Hypertens A 9:2157–2168

    Article  PubMed  CAS  Google Scholar 

  28. Cancelas J, Prieto PG, García-Arévalo M, Villanueva-Peñacarrillo ML, Malaisse WJ, Valverde I (2008) Induction and reversibility of insulin resistance in rats exposed to exogenous d-fructose. Horm Metab Res 40:459–466

    Article  PubMed  CAS  Google Scholar 

  29. Arnés L, González N, Tornero-Esteban P, Sancho V, Acitores A, Valverde I, Delgado E, Villanueva-Peñacarrillo ML (2008) Characteristics of GLP-1 and exendin action upon glucose transport and metabolism in type 2 diabetic rat skeletal muscle. Int J Mol Med 22:127–132

    PubMed  Google Scholar 

  30. Herbert V, Lau KS, Goltlieb CW, Bleicher SJ (1956) Coated charcoal inmunoassay of insulin. J Clin Invest 25:1375–1384

    Google Scholar 

  31. Valverde I, Barreto M, Malaisse WJ (1988) Stimulation by d-glucose of protein biosynthesis in tumoral insulin-producing cells (RINm5F line). Endocrinology 122:1443–1448

    Article  PubMed  CAS  Google Scholar 

  32. Ascencio C, Torres N, Isoard-Acosta F, Gómez-Pérez FJ, Hernández-Pando R, Tovar AR (2004) Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J Nutr 134:522–529

    PubMed  CAS  Google Scholar 

  33. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619

    Article  Google Scholar 

  34. Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  35. Ulrich D, Van RB, Laib A, Ruegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60

    Article  PubMed  CAS  Google Scholar 

  36. Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1:15–23

    Article  PubMed  Google Scholar 

  37. Harrigan TP, Mann RW (1984) Characterisation of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767

    Article  CAS  Google Scholar 

  38. Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330

    Article  PubMed  CAS  Google Scholar 

  39. Carnevale V, Romagnoli E, D′Erasmo E (2004) Skeletal involvement in patients with diabetes mellitus. Diabetes Metab Res Rev 20:196–204

    Article  PubMed  Google Scholar 

  40. Hampson G, Evans C, Petitt RJ, Evans WD, Woodhead SJ, Peters JR, Ralston SH (1998) Bone mineral density, collagen type 1 alpha genotypes and bone turnover in premenopausal women with diabetes mellitus. Diabetologia 41:1314–1320

    Article  PubMed  CAS  Google Scholar 

  41. Hofbauer L, Brueck CC, Singh SK, Dobnig H (2007) Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 22:1317–1328

    Article  PubMed  CAS  Google Scholar 

  42. Bjarnason NH, Henriksen EE, Alexandersen P, Christgau S, Henriksen DB, Christiansen C (2002) Mechanism of circadian variation in bone resorption. Bone 30:307–313

    Article  PubMed  CAS  Google Scholar 

  43. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R (2002) Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 30:886–890

    Article  PubMed  CAS  Google Scholar 

  44. Clowes JA, Robinson RT, Heller SR, Eastell R, Blumsohn A (2002) Acute changes of bone turnover and PTH induced by insulin and glucose: euglucemic and hypoglycemic hyperinsulinemic clamp studies. J Clin Endocrinol Metab 87:3324–3329

    Article  PubMed  CAS  Google Scholar 

  45. Ding KH, Shi XM, Zhong Q, Kang B, Xie D, Bollag WB, Bollag RJ, Hill W, Washington W, Mi QS, Insogna K, Chutkan N, Hamrick M, Isales CM (2008) Impact of glucose-dependent insulinotropic peptide on age-induced bone loss. J Bone Miner Res 23:536–543

    Article  PubMed  CAS  Google Scholar 

  46. Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, Holst JJ, Christiansen C (2007) Disassociation of bone resorption and formation by GLP-2 a 14-day study in healthy postmenopausal women. Bone 40:723–729

    Article  PubMed  CAS  Google Scholar 

  47. Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ (2001) Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 30:609–613

    Article  Google Scholar 

  48. Thrailkill KM, Liu L, Wahl EC, Bunn RC, Perrien DS, Cockrell GE, Skinner RA, Hogue WR, Carver AA, Fowlkes JL, Aronson J, Lumpkin CK Jr (2005) Bone formation is impaired in a model of type 1 diabetes. Diabetes 54:2875–2881

    Article  PubMed  CAS  Google Scholar 

  49. Saito M, Fujii K, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523

    Article  PubMed  CAS  Google Scholar 

  50. Henriksen DB, Alexandersen P, Byrjalsen I, Hartmann B, Bone HG, Christiansen C, Holst JJ (2004) Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone 34:140–147

    Article  PubMed  CAS  Google Scholar 

  51. Power RA, Iwaniec UT, Magee KA, Mitova-Caneva NG, Wronski TJ (2004) Basic fibroblast growth factor has rapid bone anabolic effects in ovariectomized rats. Osteoporos Int 15:716–723

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CIBERDEM and grants (PI 060076 and PI 050117) from ISCIII, Ministry of Ciencia e Innovación. B. N., P. M., and J. C. are research fellows from Fundación Conchita Rábago de Jiménez Díaz and J. J. H. is a research fellow from Fundación IMABIS. We thank Estrella Martín-Crespo for excellent technical assistance; Amelia Porres for measuring plasma calcium, phosphate, and creatinine; and Mark Davis for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María L. Villanueva-Peñacarrillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuche-Berenguer, B., Moreno, P., Esbrit, P. et al. Effect of GLP-1 Treatment on Bone Turnover in Normal, Type 2 Diabetic, and Insulin-Resistant States. Calcif Tissue Int 84, 453–461 (2009). https://doi.org/10.1007/s00223-009-9220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9220-3

Keywords

Navigation