Skip to main content

Advertisement

Log in

Glucocorticoid Excess in Bone and Muscle

  • Review Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Glucocorticoids (GC), produced and released by the adrenal glands, regulate numerous physiological processes in a wide range of tissues. Because of their profound immunosuppressive and anti-inflammatory actions, GC are extensively used for the treatment of immune and inflammatory conditions, the management of organ transplantation, and as a component of chemotherapy regimens for cancers. However, both pathologic endogenous elevation and long-term use of exogenous GC are associated with severe adverse effects. In particular, excess GC has devastating effects on the musculoskeletal system. GC increase bone resorption and decrease formation leading to bone loss, microarchitectural deterioration, and fracture. GC also induce loss of muscle mass and strength leading to an increased incidence of falls. The combined effects on bone and muscle account for the increased fracture risk with GC. This review summarizes the advance in knowledge in the last two decades about the mechanisms of action of GC in bone and muscle and the attempts to interfere with the damaging actions of GC in these tissues with the goal of developing more effective therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Plotz CM, Knowlton AI, Ragan C. The natural history of Cushing's syndrome. Am J Med. 1952;13(5):597–614. https://doi.org/10.1016/0002-9343(52)90027-2.

    Article  CAS  PubMed  Google Scholar 

  2. Soffer LJ, Iannacconone A, Gabrilove JL. Cushing's syndrome. Am J Med. 1961;30:129–46.

    Article  Google Scholar 

  3. Ross EJ, Linch DC. Cushing's syndrome--killing disease: discriminatory value of signs and symptoms aiding early diagnosis. Lancet. 1982;2:646–9.

    Article  CAS  PubMed  Google Scholar 

  4. Littooij AS, Kwee TC, Enriquez G, et al. Whole-body MRI reveals high incidence of osteonecrosis in children treated for Hodgkin lymphoma. Br J Haematol. 2017;176(4):637–42. https://doi.org/10.1111/bjh.14452.

    Article  CAS  PubMed  Google Scholar 

  5. Aljebab F, Choonara I, Conroy S. Systematic review of the toxicity of long-course oral corticosteroids in children. PLoS One. 2017;12(1):e0170259. https://doi.org/10.1371/journal.pone.0170259.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gudbjornsson B, Juliusson UI, Gudjonsson FV. Prevalence of long term steroid treatment and the frequency of decision making to prevent steroid induced osteoporosis in daily clinical practice. Ann Rheum Dis. 2002;61(1):32–6. https://doi.org/10.1136/ard.61.1.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Overman RA, Gourlay ML, Deal CL, et al. Fracture rate associated with quality metric-based anti-osteoporosis treatment in glucocorticoid-induced osteoporosis. Osteoporos Int. 2015;26:1515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Canalis E, Mazziotti G, Giustina A, et al. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.

    Article  CAS  PubMed  Google Scholar 

  9. Batchelor TT, Taylor LP, Thaler HT, et al. Steroid myopathy in cancer patients. Neurology. 1997;48:1234–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bowyer SL, LaMothe MP, Hollister JR. Steroid myopathy: incidence and detection in a population with asthma. J Allergy Clin Immunol. 1985;76:234–42.

    Article  CAS  PubMed  Google Scholar 

  11. Van Staa TP, Laan RF, Barton IP, Cohen S, Reid DM, Cooper C. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 2003;48(11):3224–9. https://doi.org/10.1002/art.11283.

    Article  PubMed  CAS  Google Scholar 

  12. Weinstein RS, Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365:(1)62–70. https://doi.org/10.1056/NEJMcp1012926.

  13. Chapman K, Holmes M, Seckl J. 11beta-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev. 2013;93:1139–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charmandari E, Kino T, Chrousos GP. Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. Endocr Dev. 2013;24:67–85. https://doi.org/10.1159/000342505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomlinson JW, Draper N, Mackie J, et al. Absence of Cushingoid phenotype in a patient with Cushing's disease due to defective cortisone to cortisol conversion. J Clin Endocrinol Metab. 2002;87:57–62.

    CAS  PubMed  Google Scholar 

  16. Arai H, Kobayashi N, Nakatsuru Y, et al. A case of cortisol producing adrenal adenoma without phenotype of Cushing's syndrome due to impaired 11beta-hydroxysteroid dehydrogenase 1 activity. Endocr J. 2008;55:709–15.

    Article  CAS  PubMed  Google Scholar 

  17. Draper N, Walker EA, Bujalska IJ, et al. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet. 2003;34:434–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lavery GG, Idkowiak J, Sherlock M, et al. Novel H6PDH mutations in two girls with premature adrenarche: 'apparent' and 'true' CRD can be differentiated by urinary steroid profiling. Eur J Endocrinol. 2013;168:K19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morgan SA, Hassan-Smith ZK, Lavery GG. Mechanisms in endocrinology: tissue-specific activation of cortisol in Cushing's syndrome. Eur J Endocrinol. 2016;175:R83–9.

    Article  PubMed  CAS  Google Scholar 

  20. Swartz SL, Dluhy RG. Corticosteroids: clinical pharmacology and therapeutic use. Drugs. 1978;16(3):238–55. https://doi.org/10.2165/00003495-197816030-00006.

    Article  CAS  PubMed  Google Scholar 

  21. Lipworth BJ. Systemic adverse effects of inhaled corticosteroid therapy: a systematic review and meta-analysis. Arch Intern Med. 1999;159(9):941–55. https://doi.org/10.1001/archinte.159.9.941.

    Article  CAS  PubMed  Google Scholar 

  22. Crilly RG, Marshall DH, Nordin BE. Metabolic effects of corticosteroid therapy in post-menopausal women. J Steroid Biochem. 1979;11:429–33.

    Article  CAS  PubMed  Google Scholar 

  23. Lukert BP, Johnson BE, Robinson RG. Estrogen and progesterone replacement therapy reduces glucocorticoid- induced bone loss. J Bone Miner Res. 1992;7:1063–9.

    Article  CAS  PubMed  Google Scholar 

  24. Crilly RG, Marshall DH, Horsman A, Nordin BEC, Peacock M. Corticosteroid Osteoporosis. In: Dixon ASJ, Russell RGG, Stamp TCB, editors. Osteoporosis, A Multi-Disciplinary Problem. London: Academic press Inc and Royal Society of Medicine; 1983. p. 153–9.

    Google Scholar 

  25. Oikarinen A, Haapasaari KM, Sutinen M, et al. The molecular basis of glucocorticoid-induced skin atrophy: topical glucocorticoid apparently decreases both collagen synthesis and the corresponding collagen mRNA level in human skin in vivo. Br J Dermatol. 1998;139:1106–10.

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz AV. Diabetes mellitus: does it affect bone? Calcif Tissue Int. 2003;73(6):515–9. https://doi.org/10.1007/s00223-003-0023-7.

    Article  CAS  PubMed  Google Scholar 

  27. Cooper MS. Glucocorticoids in bone and joint disease: the good, the bad and the uncertain. Clin Med (Lond). 2012;12(3):261–5. https://doi.org/10.7861/clinmedicine.12-3-261.

    Article  Google Scholar 

  28. Shi L, Sanchez-Guijo A, Hartmann MF, et al. Higher glucocorticoid secretion in the physiological range is associated with lower bone strength at the proximal radius in healthy children: importance of protein intake adjustment. J Bone Miner Res. 2015;30:240–8.

    Article  CAS  PubMed  Google Scholar 

  29. Cooper MS, Rabbitt EH, Goddard PE, et al. Osteoblastic 11beta-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J Bone Miner Res. 2002;17:979–86.

    Article  CAS  PubMed  Google Scholar 

  30. Cooper MS, Syddall HE, Fall CH, et al. Circulating cortisone levels are associated with biochemical markers of bone formation and lumbar spine BMD: the Hertfordshire cohort study. Clin Endocrinol. 2005;62:692–7.

    Article  CAS  Google Scholar 

  31. van Schoor NM, Dennison E, Lips P, Uitterlinden AG, Cooper C. Serum fasting cortisol in relation to bone, and the role of genetic variations in the glucocorticoid receptor. Clin Endocrinol. 2007;67(6):871–8. https://doi.org/10.1111/j.1365-2265.2007.02978.x.

    Article  CAS  Google Scholar 

  32. Suman OE, Spies RJ, Celis MM, et al. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol (1985). 2001;91:1168–75.

    Article  CAS  Google Scholar 

  33. Przkora R, Herndon DN, Sherrard DJ, et al. Pamidronate preserves bone mass for at least 2 years following acute administration for pediatric burn injury. Bone. 2007;41:297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Norbury WB, Herndon DN, Branski LK, et al. Urinary cortisol and catecholamine excretion after burn injury in children. J Clin Endocrinol Metab. 2008;93:1270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Besemer F, Pereira AM, Smit JW. Alcohol-induced Cushing syndrome. Hypercortisolism caused by alcohol abuse. Neth J Med. 2011;69:318–23.

    CAS  PubMed  Google Scholar 

  36. Van Staa TP, Leufkens HG, Cooper C. Use of inhaled corticosteroids and risk of fractures. J Bone Miner Res. 2001;16(3):581–8. https://doi.org/10.1359/jbmr.2001.16.3.581.

    Article  PubMed  Google Scholar 

  37. Van Staa TP, Abenhaim L, Cooper C, et al. Public health impact of adverse bone effects of oral corticosteroids. Br J Clin Pharmacol. 2001;51(6):601–7. https://doi.org/10.1046/j.0306-5251.2001.bjcp.1385.x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C. Use of oral corticoisteroids and risk of fractures. J Bone Miner Res. 2000;15(6):993–1000. https://doi.org/10.1359/jbmr.2000.15.6.993.

    Article  PubMed  Google Scholar 

  39. Walsh LJ, Wong CA, Oborne J, et al. Adverse effects of oral corticosteroids in relation to dose in patients with lung disease. Thorax. 2001;56:279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hubbard RB, Smith CJ, Smeeth L, et al. Inhaled corticosteroids and hip fracture: a population-based case-control study. Am J Respir Crit Care Med. 2002;166:1563–6.

    Article  PubMed  Google Scholar 

  41. Van Staa TP. The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis. Calcif Tissue Int. 2006;79(3):129–37. https://doi.org/10.1007/s00223-006-0019-1.

    Article  CAS  PubMed  Google Scholar 

  42. Luengo M, Picado C, Del Rio L, et al. Vertebral fractures in steroid dependent asthma and involutional osteoporosis: a comparative study. Thorax. 1991;46:803–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Selby PL, Halsey JP, Adams KR, et al. Corticosteroids do not alter the threshold for vertebral fracture. J Bone Miner Res. 2000;15:952–6.

    Article  CAS  PubMed  Google Scholar 

  44. Yang S, Shen X. Association and relative importance of multiple obesity measures with bone mineral density: the National Health and nutrition examination survey 2005-2006. Arch Osteoporos. 2015;10(1):14. https://doi.org/10.1007/s11657-015-0219-2.

    Article  PubMed  Google Scholar 

  45. Zhu K, Hunter M, James A, et al. Associations between body mass index, lean and fat body mass and bone mineral density in middle-aged Australians: the Busselton healthy ageing study. Bone. 2015;74:146–52.

    Article  PubMed  Google Scholar 

  46. Cosman F, Nieves J, Herbert J, et al. High-dose glucocorticoids in multiple sclerosis patients exert direct effects on the kidney and skeleton. J Bone Miner Res. 1994;9:1097–105.

    Article  CAS  PubMed  Google Scholar 

  47. Dovio A, Perazzolo L, Osella G, et al. Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. J Clin Endocrinol Metab. 2004;89:4923–8.

    Article  CAS  PubMed  Google Scholar 

  48. Aaron JE, Francis RM, Peacock M, et al. Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop Relat Res. 1989:294–305.

  49. Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357:2028–39.

    Article  CAS  PubMed  Google Scholar 

  50. Cooper C, Steinbuch M, Stevenson R, et al. The epidemiology of osteonecrosis: findings from the GPRD and THIN databases in the UK. Osteoporos Int. 2010;21:569–77.

    Article  CAS  PubMed  Google Scholar 

  51. Ikeuchi K, Hasegawa Y, Seki T, et al. Epidemiology of nontraumatic osteonecrosis of the femoral head in Japan. Mod Rheumatol. 2015;25:278–81.

    Article  PubMed  Google Scholar 

  52. Kubo T, Ueshima K, Saito M, et al. Clinical and basic research on steroid-induced osteonecrosis of the femoral head in Japan. J Orthop Sci. 2016;21:407–13.

    Article  PubMed  Google Scholar 

  53. Assouline-Dayan Y, Chang C, Greenspan A, Shoenfeld Y, Gershwin ME. Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum. 2002;32(2):94–124. https://doi.org/10.1053/sarh.2002.33724b.

    Article  PubMed  Google Scholar 

  54. Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin N Am. 2012;41(3):595–611. https://doi.org/10.1016/j.ecl.2012.04.004.

    Article  Google Scholar 

  55. Murphey MD, Foreman KL, Klassen-Fischer MK, et al. From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. Radiographics. 2014;34:1003–28.

    Article  PubMed  Google Scholar 

  56. Dilisio MF. Osteonecrosis following short-term, low-dose oral corticosteroids: a population-based study of 24 million patients. Orthopedics. 2014;37:e631–6.

    Article  PubMed  Google Scholar 

  57. Chen CH, Chang JK, Lai KA, et al. Alendronate in the prevention of collapse of the femoral head in nontraumatic osteonecrosis: a two-year multicenter, prospective, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2012;64:1572–8.

    Article  CAS  PubMed  Google Scholar 

  58. Khaleeli AA, Edwards RH, Gohil K, et al. Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol. 1983;18:155–66.

    Article  CAS  Google Scholar 

  59. Gupta A, Gupta Y. Glucocorticoid-induced myopathy: pathophysiology, diagnosis, and treatment. Indian J Endocrinol Metab. 2013;17(5):913–6. https://doi.org/10.4103/2230-8210.117215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Janssens S, Decramer M. Corticosteroid-induced myopathy and the respiratory muscles. Report of two cases. Chest. 1989;95(5):1160–2. https://doi.org/10.1378/chest.95.5.1160.

    Article  CAS  PubMed  Google Scholar 

  61. Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 2008;197:1–10.

    Article  CAS  PubMed  Google Scholar 

  62. Hasselgren PO, Alamdari N, Aversa Z, et al. Corticosteroids and muscle wasting: role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care. 2010;13(4):423–8. https://doi.org/10.1097/MCO.0b013e32833a5107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morgan SA, Hassan-Smith ZK, Doig CL, et al. Glucocorticoids and 11beta-HSD1 are major regulators of intramyocellular protein metabolism. J Endocrinol. 2016;229:277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weinstein RS, Chen JR, Powers CC, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest. 2002;109:1041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab. 2000;85:2907–12.

    CAS  PubMed  Google Scholar 

  66. O'Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145:1835–41.

    Article  PubMed  CAS  Google Scholar 

  67. Reid IR. Glucocorticoid osteoporosis--mechanisms and management. Eur J Endocrinol. 1997;137(3):209–17. https://doi.org/10.1530/eje.0.1370209.

    Article  CAS  PubMed  Google Scholar 

  68. Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104:1363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing's syndrome. Lancet. 2006;367(9522):1605–17. https://doi.org/10.1016/S0140-6736(06)68699-6.

    Article  CAS  PubMed  Google Scholar 

  70. Weinstein RS. Glucocorticoid-induced osteoporosis. Rev Endocr Metab Disord. 2001;2(1):65–73. https://doi.org/10.1023/A:1010007108155.

    Article  CAS  PubMed  Google Scholar 

  71. Mazziotti G, Angeli A, Bilezikian JP, et al. Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab. 2006;17:144–9.

    Article  CAS  PubMed  Google Scholar 

  72. Van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87. https://doi.org/10.1007/s001980200108.

    Article  PubMed  Google Scholar 

  73. Laan RFJM, Van Riel PLCM, Van de Putte LBA, et al. Low-dose prednisone induces rapid reversible axial bone loss in patients with rheumatoid arthritis: a randomized, controlled study. Ann Intern Med. 1993;119:963–8.

    Article  CAS  PubMed  Google Scholar 

  74. Devogelaer JP, Adler RA, Recknor C, et al. Baseline glucocorticoid dose and bone mineral density response with teriparatide or alendronate therapy in patients with glucocorticoid-induced osteoporosis. J Rheumatol. 2010;37:141–8.

    Article  CAS  PubMed  Google Scholar 

  75. LoCascio V, Bonucci E, Imbimbo B, et al. Bone loss in response to long-term glucocorticoid therapy. Bone Miner. 1990;8:39–51.

    Article  CAS  PubMed  Google Scholar 

  76. Jia D, O'Brien CA, Stewart SA, et al. Glucocorticoids act directly on osteoclasts to increase their lifespan and reduce bone density. Endocrinology. 2006;147:5592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hofbauer LC, Zeitz U, Schoppet M, et al. Prevention of glucocorticoid-induced bone loss in mice by inhibition of RANKL. Arthritis Rheum. 2009;60:1427–37.

    Article  PubMed  Google Scholar 

  78. Plotkin LI, Bivi N, Bellido T. A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice. Bone. 2011;49(1):122–7. https://doi.org/10.1016/j.bone.2010.08.011.

    Article  CAS  PubMed  Google Scholar 

  79. Sato AY, Richardson D, Cregor M, et al. Glucocorticoids induce bone and muscle atrophy by tissue-specific mechanisms upstream of E3 ubiquitin ligases. Endocrinology. 2017;158:664–77.

    PubMed  Google Scholar 

  80. Leclerc N, Noh T, Cogan J, et al. Opposing effects of glucocorticoids and Wnt signaling on Krox 20 and mineral deposition in osteoblast cultures. J Cell Biochem. 2008;103:1938–51.

    Article  CAS  PubMed  Google Scholar 

  81. Mortensen RF, Shapiro J, Lin BF, et al. Interaction of recombinant IL-1 and recombinant tumor necrosis factor in the induction of mouse acute phase proteins. J Immunol. 1988;140:2260–6.

    CAS  PubMed  Google Scholar 

  82. Advani S, LaFrancis D, Bogdanovic E, et al. Dexamethasone suppresses in vivo levels of bone collagen synthesis in neonatal mice. Bone. 1997;20:41–6.

    Article  CAS  PubMed  Google Scholar 

  83. Rauch A, Seitz S, Baschant U, et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 2010;11:517–31.

    Article  CAS  PubMed  Google Scholar 

  84. Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Weinstein RS, Hogan EA, Borrelli MJ, Liachenko S, O’Brien CA, Manolagas SC. The pathophysiological sequence of glucocorticoid-induced osteonecrosis of the femoral head in male mice. Endocrinology. 2017;158(11):3817–31. https://doi.org/10.1210/en.2017-00662.

    Article  PubMed  Google Scholar 

  86. Fowler TW, Acevedo C, Mazur CM, et al. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep. 2017;7:44618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang M, Trettel LB, Adams DJ, et al. Col 3.6-HSD2 transgenic mice: a glucocorticoid loss-of-function model spanning early and late osteoblast differentiation. Bone. 2010;47:573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sher LB, Harrison JR, Adams DJ, et al. Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcif Tissue Int. 2006;79:118–25.

    Article  CAS  PubMed  Google Scholar 

  89. Kalak R, Zhou H, Street J, et al. Endogenous glucocorticoid signalling in osteoblasts is necessary to maintain normal bone structure in mice. Bone. 2009;45:61–7.

    Article  CAS  PubMed  Google Scholar 

  90. Sher LB, Woitge HW, Adams DJ, et al. Transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology. 2004;145:922–9.

    Article  CAS  PubMed  Google Scholar 

  91. Aarden EM, Wassenaar AM, Alblas MJ, et al. Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem Cell Biol. 1996;106:495–501.

    Article  CAS  PubMed  Google Scholar 

  92. Frendo JL, Xiao G, Fuchs S, et al. Functional hierarchy between two OSE2 elements in the control of osteocalcin gene expression in vivo. J Biol Chem. 1998;273:30509–16.

    Article  CAS  PubMed  Google Scholar 

  93. Cheng SL, Yang JW, Rifas L, et al. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology. 1994;134:277–86.

    Article  CAS  PubMed  Google Scholar 

  94. Ishida Y, Heersche JN. Glucocorticoid-induced osteoporosis: both in vivo and in vitro concentrations of glucocorticoids higher than physiological levels attenuate osteoblast differentiation. J Bone Miner Res. 1998;13(12):1822–6. https://doi.org/10.1359/jbmr.1998.13.12.1822.

    Article  CAS  PubMed  Google Scholar 

  95. Ito S, Suzuki N, Kato S, et al. Glucocorticoids induce the differentiation of a mesenchymal progenitor cell line, ROB-C26 into adipocytes and osteoblasts, but fail to induce terminal osteoblast differentiation. Bone. 2007;40:84–92.

    Article  CAS  PubMed  Google Scholar 

  96. Gohel A, McCarthy MB, Gronowicz G. Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology. 1999;140(11):5339–47. https://doi.org/10.1210/endo.140.11.7135.

    Article  CAS  PubMed  Google Scholar 

  97. Plotkin LI, Manolagas SC, Bellido T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival: evidence for inside-out signaling leading to anoikis. J Biol Chem. 2007;282:24120–30.

    Article  CAS  PubMed  Google Scholar 

  98. Necela BM, Cidlowski JA. Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells. Proc Am Thorac Soc. 2004;1(3):239–46. https://doi.org/10.1513/pats.200402-005MS.

    Article  CAS  PubMed  Google Scholar 

  99. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711–23. https://doi.org/10.1056/NEJMra050541.

    Article  CAS  PubMed  Google Scholar 

  100. Druilhe A, Letuve S, Pretolani M. Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action. Apoptosis. 2003;8:481–95.

    Article  CAS  PubMed  Google Scholar 

  101. Limbourg FP, Liao JK. Nontranscriptional actions of the glucocorticoid receptor. J Mol Med. 2003;81(3):168–74. https://doi.org/10.1007/s00109-003-0418-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene. 1997;15:837–43.

    Article  CAS  PubMed  Google Scholar 

  103. Blaukat A, Ivankovic-Dikic I, Gronroos E, et al. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem. 1999;274:14893–901.

    Article  CAS  PubMed  Google Scholar 

  104. Tokiwa G, Dikic I, Lev S, et al. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science. 1996;273:792–4.

    Article  CAS  PubMed  Google Scholar 

  105. Chauhan D, Hideshima T, Pandey P, et al. RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene. 1999;18:6733–40.

    Article  CAS  PubMed  Google Scholar 

  106. Xiong W, Parsons JT. Induction of apoptosis after expression of PYK2, a tyrosine kinase structurally related to focal adhesion kinase. J Cell Biol. 1997;139(2):529–39. https://doi.org/10.1083/jcb.139.2.529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sasaki H, Nagura K, Ishino M, et al. Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem. 1995;270:21206–19.

    Article  CAS  PubMed  Google Scholar 

  108. Avraham H, Park S, Schinkmann K, et al. RAFTK/Pyk2-mediated cellular signalling. Cell Signal. 2000;12:123–33.

    Article  CAS  PubMed  Google Scholar 

  109. Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–32. https://doi.org/10.1126/science.285.5430.1028.

    Article  CAS  PubMed  Google Scholar 

  110. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science. 1995;268(5208):233–9. https://doi.org/10.1126/science.7716514.

    Article  CAS  PubMed  Google Scholar 

  111. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol. 1997;9(5):701–6. https://doi.org/10.1016/S0955-0674(97)80124-X.

    Article  CAS  PubMed  Google Scholar 

  112. Ginsberg MH, Partridge A, Shattil SJ. Integrin regulation. Curr Opin Cell Biol. 2005;17(5):509–16. https://doi.org/10.1016/j.ceb.2005.08.010.

    Article  CAS  PubMed  Google Scholar 

  113. Hynes R. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87. https://doi.org/10.1016/S0092-8674(02)00971-6.

    Article  CAS  PubMed  Google Scholar 

  114. Plotkin LI, Mathov I, Aguirre JI, et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases and ERKs. Am J Physiol Cell Physiol. 2005;289:C633–43.

    Article  CAS  PubMed  Google Scholar 

  115. Vanden Berghe W, Francesconi E, De Bosscher K, et al. Dissociated glucocorticoids with anti-inflammatory potential repress interleukin-6 gene expression by a nuclear factor-kappaB-dependent mechanism. Mol Pharmacol. 1999;56:797–806.

    Google Scholar 

  116. Cheng SL, Zhang SF, Mohan S, et al. Regulation of insulin-like growth factors I and II and their binding proteins in human bone marrow stromal cells by dexamethasone. J Cell Biochem. 1998;71:449–58.

    Article  CAS  PubMed  Google Scholar 

  117. Chang DJ, Ji C, Kim KK, et al. Reduction in transforming growth factor beta receptor I expression and transcription factor CBFa1 on bone cells by glucocorticoid. J Biol Chem. 1998;273:4892–6.

    Article  CAS  PubMed  Google Scholar 

  118. Doherty WJ, Derome ME, McCarthy MB, et al. The effect of glucocorticoids on osteoblast function. The effect of corticosterone on osteoblast expression of beta 1 integrins. J Bone Joint Surg Am. 1995;77:396–404.

    Article  CAS  PubMed  Google Scholar 

  119. Almeida M, Han L, Ambrogini E, et al. Glucocorticoids and tumor necrosis factor (TNF) alpha increase oxidative stress and suppress WNT signaling in osteoblasts. J Biol Chem. 2011;286:44326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.

    Article  CAS  PubMed  Google Scholar 

  121. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6. https://doi.org/10.1126/science.1209038.

    Article  CAS  PubMed  Google Scholar 

  122. Sato AY, Tu X, McAndrews KA, et al. Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice. Bone. 2015;73:60–8.

    Article  PubMed  CAS  Google Scholar 

  123. Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307:935–9.

    Article  CAS  PubMed  Google Scholar 

  124. Tsaytler P, Harding HP, Ron D, et al. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 2011;332:91–4.

    Article  CAS  PubMed  Google Scholar 

  125. Yokota H, Hamamura K, Chen A, et al. Effects of salubrinal on development of osteoclasts and osteoblasts from bone marrow-derived cells. BMC Musculoskelet Disord. 2013;14(1):197. https://doi.org/10.1186/1471-2474-14-197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hamamura K, Tanjung N, Yokota H. Suppression of osteoclastogenesis through phosphorylation of eukaryotic translation initiation factor 2 alpha. J Bone Miner Metab. 2013;31(6):618–28. https://doi.org/10.1007/s00774-013-0450-0.

    Article  CAS  PubMed  Google Scholar 

  127. Hamamura K, Yokota H. Stress to endoplasmic reticulum of mouse osteoblasts induces apoptosis and transcriptional activation for bone remodeling. FEBS Lett. 2007;581(9):1769–74. https://doi.org/10.1016/j.febslet.2007.03.063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Saito A, Ochiai K, Kondo S, et al. Endoplasmic reticulum stress response mediated by the PERK-eIF2 (alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem. 2011;286:4809–18.

    Article  CAS  PubMed  Google Scholar 

  129. Sato AY, Cregor M, Delgado-Calle J, et al. Protection from glucocorticoid-induced osteoporosis by anti-catabolic signaling in the absence of Sost/sclerostin. J Bone Miner Res. 2016;31:1791–802.

    Article  CAS  PubMed  Google Scholar 

  130. Piemontese M, Xiong J, Fujiwara Y, et al. Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. Am J Physiol Endocrinol Metab. 2016;311(3):E587–93. https://doi.org/10.1152/ajpendo.00219.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360:53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92. https://doi.org/10.1038/nm.3074.

    Article  CAS  PubMed  Google Scholar 

  133. Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.

    Article  CAS  PubMed  Google Scholar 

  134. Dixon JM, Cull RE, Gamble P. Two cases of van Buchem's disease. J Neurol Neurosurg Psychiatry. 1982;45:913–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Leupin O, Piters E, Halleux C, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286:19489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Glass DA, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64.

    Article  CAS  PubMed  Google Scholar 

  137. Holmen SL, Zylstra CR, Mukherjee A, et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 2005;280:21162–8.

    Article  CAS  PubMed  Google Scholar 

  138. Jilka RL, Bellido T, Almeida M, Plotkin LI, O'Brien CA, Weinstein RS, et al. Apoptosis in bone cells. In: Bilezikian JP, Raisz LG, Martin TJ, editors. Principles of Bone Biology. San Diego, San Francisco, New York, London, Sydney, Tokyo: Academic Press; 2008. p. 237–61. https://doi.org/10.1016/B978-0-12-373884-4.00032-X.

    Chapter  Google Scholar 

  139. Marenzana M, Greenslade K, Eddleston A, et al. Sclerostin antibody treatment enhances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthritis Rheum. 2011;63:2385–95.

    Article  CAS  PubMed  Google Scholar 

  140. Yao W, Dai W, Jiang L, et al. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int. 2016;27:283–94.

    Article  CAS  PubMed  Google Scholar 

  141. van Lierop AH, Hamdy NA. Papapoulos,SE glucocorticoids are not always deleterious for bone. J Bone Miner Res. 2010;25(12):2796–800. https://doi.org/10.1002/jbmr.151.

    Article  PubMed  CAS  Google Scholar 

  142. Rizzoli R, Adachi JD, Cooper C, et al. Management of glucocorticoid-induced osteoporosis. Calcif Tissue Int. 2012;91:225–43.

    Article  CAS  PubMed  Google Scholar 

  143. Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-induced osteoporosis intervention study group. N Engl J Med. 1998;339:292–9.

    Article  CAS  PubMed  Google Scholar 

  144. Mok CC, Ho LY, Ma KM. Switching of oral bisphosphonates to denosumab in chronic glucocorticoid users: a 12-month randomized controlled trial. Bone. 2015;75:222–8.

    Article  CAS  PubMed  Google Scholar 

  145. Allen MR, Iwata K, Phipps R, et al. Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006;39:872–9.

    Article  CAS  PubMed  Google Scholar 

  146. Mashiba T, Turner CH, Hirano T, et al. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28:524–31.

    Article  CAS  PubMed  Google Scholar 

  147. O'Ryan FS, Khoury S, Liao W, et al. Intravenous bisphosphonate-related osteonecrosis of the jaw: bone scintigraphy as an early indicator. J Oral Maxillofac Surg. 2009;67:1363–72.

    Article  PubMed  Google Scholar 

  148. Allen MR, Burr DB. Mineralization, microdamage, and matrix: how bisphosphonates influence material properties of bone. BoneKEy-osteovision. 2007;4(2):49–60. https://doi.org/10.1138/20060248.

    Article  Google Scholar 

  149. Minetto MA, Botter A, Lanfranco F, et al. Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J Clin Endocrinol Metab. 2010;95:1663–71.

    Article  CAS  PubMed  Google Scholar 

  150. Minetto MA, Qaisar R, Agoni V, et al. Quantitative and qualitative adaptations of muscle fibers to glucocorticoids. Muscle Nerve. 2015;52:631–9.

    Article  CAS  PubMed  Google Scholar 

  151. Schakman O, Kalista S, Barbe C, et al. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 2013;45:2163–72.

    Article  CAS  PubMed  Google Scholar 

  152. Sandri M, Lin J, Handschin C, et al. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A. 2006;103(44):16260–5. https://doi.org/10.1073/pnas.0607795103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–8.

    Article  CAS  PubMed  Google Scholar 

  154. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A. 2001;98(25):14440–5. https://doi.org/10.1073/pnas.251541198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Menconi M, Gonnella P, Petkova V, Lecker S, Hasselgren PO. Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J Cell Biochem. 2008;105(2):353–64. https://doi.org/10.1002/jcb.21833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Furlow JD, Watson ML, Waddell DS, Neff ES, Baehr LM, Ross AP, et al. Altered gene expression patterns in muscle ring finger 1 null mice during denervation- and dexamethasone-induced muscle atrophy. Physiol Genomics. 2013;45(23):1168–85. https://doi.org/10.1152/physiolgenomics.00022.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Baehr LM, Furlow JD, Bodine SC. Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol. 2011;589(19):4759–76. https://doi.org/10.1113/jphysiol.2011.212845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Watson ML, Baehr LM, Reichardt HM, et al. A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. Am J Physiol Endocrinol Metab. 2012;302(10):E1210–20. https://doi.org/10.1152/ajpendo.00512.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, et al. BMP signaling controls muscle mass. Nat Genet. 2013;45(11):1309–18. https://doi.org/10.1038/ng.2772.

    Article  CAS  PubMed  Google Scholar 

  160. Kondo H, Ezura Y, Nakamoto T, Hayata T, Notomi T, Sorimachi H, et al. MURF1 deficiency suppresses unloading-induced effects on osteoblasts and osteoclasts to lead to bone loss. J Cell Biochem. 2011;112(12):3525–30. https://doi.org/10.1002/jcb.23327.

    Article  CAS  PubMed  Google Scholar 

  161. Fournier M, Huang ZS, Li H, Da X, Cercek B, Lewis MI. Insulin-like growth factor I prevents corticosteroid-induced diaphragm muscle atrophy in emphysematous hamsters. Am J Physiol Regul Integr Comp Physiol. 2003;285(1):R34–43. https://doi.org/10.1152/ajpregu.00177.2002.

    Article  CAS  PubMed  Google Scholar 

  162. Dekhuijzen PN, Gayan-Ramirez G, Bisschop A, de Bock V, Dom R, Decramer M. Corticosteroid treatment and nutritional deprivation cause a different pattern of atrophy in rat diaphragm. J Appl Physiol. 1995;78(2):629–37. https://doi.org/10.1152/jappl.1995.78.2.629.

    Article  CAS  PubMed  Google Scholar 

  163. Rosenblatt JD, Parry DJ. Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol (1985). 1992;73:2538–43.

    Article  CAS  Google Scholar 

  164. Falduto MT, Czerwinski SM, Hickson RC. Glucocorticoid-induced muscle atrophy prevention by exercise in fast-twitch fibers. J Appl Physiol. 1990;69(3):1058–62. https://doi.org/10.1152/jappl.1990.69.3.1058.

    Article  CAS  PubMed  Google Scholar 

  165. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412. https://doi.org/10.1016/S0092-8674(04)00400-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6(1):6670. https://doi.org/10.1038/ncomms7670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells. 2012;30(2):243–52. https://doi.org/10.1002/stem.775.

    Article  CAS  PubMed  Google Scholar 

  168. Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S. Constitutive notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol. 2012;32(12):2300–11. https://doi.org/10.1128/MCB.06753-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Buas MF, Kabak S, Kadesch T. The notch effector Hey1 associates with myogenic target genes to repress myogenesis. J Biol Chem. 2010;285(2):1249–58. https://doi.org/10.1074/jbc.M109.046441.

    Article  CAS  PubMed  Google Scholar 

  170. Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development. 1994;120(9):2385–96.

    CAS  PubMed  Google Scholar 

  171. Pereira RM, Delany AM, Durant D, et al. Cortisol regulates the expression of notch in osteoblasts. J Cell Biochem. 2002;85(2):252–8. https://doi.org/10.1002/jcb.10125.

    Article  CAS  PubMed  Google Scholar 

  172. Xu J, Li R, Workeneh B, Dong Y, Wang X, Hu Z. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 2012;82(4):401–11. https://doi.org/10.1038/ki.2012.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ambrogini E, Almeida M, Martin-Millan M, Paik JH, DePinho RA, Han L, et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab. 2010;11(2):136–46. https://doi.org/10.1016/j.cmet.2009.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Institutes of Health (grants AR059357, AT008754, AT008754-O2S1, and CA209882 to TB) and the United States Department of Veterans Affairs (I01BX002104-01 to TB). AYS was partially supported by T32-AR065971.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresita Bellido.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants

This article does not contain any studies with human participants performed by any of the authors.

Research Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, A.Y., Peacock, M. & Bellido, T. Glucocorticoid Excess in Bone and Muscle. Clinic Rev Bone Miner Metab 16, 33–47 (2018). https://doi.org/10.1007/s12018-018-9242-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-018-9242-3

Keywords

Navigation