Skip to main content
Log in

Suppression of osteoclastogenesis through phosphorylation of eukaryotic translation initiation factor 2 alpha

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

In response to various stresses including viral infection, nutrient deprivation, and stress to the endoplasmic reticulum, eukaryotic translation initiation factor 2 alpha (eIF2α) is phosphorylated to cope with stress induced apoptosis. Although bone cells are sensitive to environmental stresses that alter the phosphorylation level of eIF2α, little is known about the role of eIF2α mediated signaling during the development of bone-resorbing osteoclasts. Using two chemical agents (salubrinal and guanabenz) that selectively inhibit de-phosphorylation of eIF2α, we evaluated the effects of phosphorylation of eIF2α on osteoclastogenesis of RAW264.7 pre-osteoclasts as well as development of MC3T3 E1 osteoblast-like cells. The result showed that salubrinal and guanabenz stimulated matrix deposition of osteoblasts through upregulation of activating transcription factor 4 (ATF4). The result also revealed that these agents reduced expression of the nuclear factor of activated T cells c1 (NFATc1) and inhibited differentiation of RAW264.7 cells to multi-nucleated osteoclasts. Partial silencing of eIF2α with RNA interference reduced suppression of salubrinal/guanabenz-driven downregulation of NFATc1. Collectively, we demonstrated that the elevated phosphorylation level of eIF2α not only stimulates osteoblastogenesis but also inhibit osteoclastogenesis through regulation of ATF4 and NFATc1. The results suggest that eIF2α-mediated signaling might provide a novel therapeutic target for preventing bone loss in osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Cell 2:389–406

    CAS  Google Scholar 

  2. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    Article  PubMed  CAS  Google Scholar 

  3. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    Article  PubMed  CAS  Google Scholar 

  4. Kimball SC (1999) Eukaryotic initiation factor eIF2. Int J Biochem 31:25–39

    Article  CAS  Google Scholar 

  5. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  PubMed  CAS  Google Scholar 

  6. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry Syndrome. Cell 117:387–398

    Article  PubMed  CAS  Google Scholar 

  7. Hamamura K, Yokota H (2007) Stress to endoplasmic reticulum of mouse osteoblasts induces apoptosis and transcriptional activation for bone remodeling. FEBS Lett 581:1769–1774

    Article  PubMed  CAS  Google Scholar 

  8. Zhang P, Hamamura K, Jiang C, Zhao L, Yokota H (2012) Salubrinal promotes healing of surgical wounds in rat femurs. J Bone Miner Metab 30:568–579

    Article  PubMed  Google Scholar 

  9. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, et al. (1988) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  Google Scholar 

  10. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  11. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    Article  PubMed  CAS  Google Scholar 

  12. Zhang P, Jiang C, Ledet E, Yokota H (2011) Loading- and unloading-driven regulation of phosphorylation of eIF2α. Biol Sci Space 25:3–6

    Article  CAS  Google Scholar 

  13. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  PubMed  CAS  Google Scholar 

  14. Tsaytler P, Harding HP, Ron D, Bertolotti A (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332:91–94

    Article  PubMed  CAS  Google Scholar 

  15. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487

    Article  PubMed  CAS  Google Scholar 

  16. Furuya Y, Mori K, Ninomiya T, Tomimori Y, Tanaka S, Takahashi N, Udagawa N, Uchida K, Yasuda H (2011) Increased bone mass in mice after single injection of anti-receptor activator of nuclear factor-κB ligand-neutralizing antibody. J Biol Chem 286:37023–37031

    Article  PubMed  CAS  Google Scholar 

  17. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198

    Article  PubMed  CAS  Google Scholar 

  18. Xu J, Tan JW, Gao XH, Laird R, Liu D, Wysocki S, Zheng MH (2000) Cloning, sequencing, and functional characterization of the rat homologue of receptor activator of NF-kappaB ligand. J Bone Miner Res 15:2178–2186

    Article  PubMed  CAS  Google Scholar 

  19. Wagner EF, Matsuo K (2003) Signaling in osteoclasts and the role of Fos/AP1 proteins. Ann Rheum Dis 62:ii83–ii85

    Article  PubMed  CAS  Google Scholar 

  20. Helfrich MH, Thesingh CW, Mieremet RH, van Iperen-van Gent AS (1987) Osteoclast generation from human fetal bone marrow in cocultures with murine fetal long bones. A model for in vitro study of human osteoclast formation and function. Cell Tissue Res 249:125–136

    Article  PubMed  CAS  Google Scholar 

  21. Kim N, Takami M, Rho J, Josien R, Choi Y (2002) A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 195:201–209

    PubMed  CAS  Google Scholar 

  22. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  PubMed  CAS  Google Scholar 

  23. Hamamura K, Zhang P, Yokota H (2008) IGF2-driven PI3 kinase and TGFβ signaling pathways in chondrogenesis. Cell Biol Int 32:1238–1246

    Article  PubMed  CAS  Google Scholar 

  24. Shah RS, Walker BR, Vanov SK, Helfant RH (1976) Guanabenz effects on blood pressure and noninvasive parameters of cardiac performance in patients with hypertension. Clin Pharmacol Ther 19:732–737

    PubMed  CAS  Google Scholar 

  25. Galli M, Caniggia M (1984) Osteocalcin. Minerva Med 75:2489–2501

    PubMed  CAS  Google Scholar 

  26. Angel NZ, Walsh N, Forwood MR, Ostrowski MC, Cassady AI, Hume DA (2000) Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increase rate of bone turnover. J Bone Miner Res 15:103–110

    Article  PubMed  CAS  Google Scholar 

  27. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197:857–867

    Article  PubMed  CAS  Google Scholar 

  28. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappaB ligand (RANKL). J Biol Chem 275:31155–31161

    Article  PubMed  CAS  Google Scholar 

  29. Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276:563–568

    Article  PubMed  CAS  Google Scholar 

  30. Kim K, Kim JH, Lee J, Jin HM, Kook H, Kim KK, Lee SY, Kim N (2007) MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109:3253–3259

    Article  PubMed  CAS  Google Scholar 

  31. Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, Tamura T, Ozato K, Choi Y, Ivashkiv LB, Takayanagi H, Kamijo R (2009) Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med 15:1066–1071

    Article  PubMed  CAS  Google Scholar 

  32. Miyauchi Y, Ninomiya K, Miyamoto H, Sakamoto A, Iwasaki R et al (2010) The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J Exp Med 207:751–762

    Article  PubMed  CAS  Google Scholar 

  33. Rossi M, Pitari MR, Amodio N, Di Martino MT, Conforti F, Leone E, Botta C, Paolino FM, Del Giudice T, Iuliano E, Caraglia M, Ferrarini M, Giordano A, Tagliaferri P, Tassone P (2012) miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol (in press)

  34. Yasui T, Hirose J, Tsutsumi S, Nakamura K, Aburatani H, Tanaka S (2011) Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J Bone Miner Res 26:2655–2671

    Google Scholar 

  35. He L, Lee J, Jang JH, Sakchaisri K, Hwang JS, Cha-Molstad HJ, Kim KA, Ryoo IJ, Lee HG, Kim SO, Soung NK, Lee KS, Kwon YT, Erikson RL, Ahn JS, Kim BY (2013) Osteoporosis regulation by salubrinal through eIF2α mediated differentiation of osteoclast and osteoblast. Cell Signal 25:552–560

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate M. Hamamura's technical assistance. This study was supported by the Grant DOD W81XWH-11-1-0716 to HY. All authors state that they have no conflicts of interest.

Conflict of interest

All authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Hamamura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figures (PPTX 234 kb)

About this article

Cite this article

Hamamura, K., Tanjung, N. & Yokota, H. Suppression of osteoclastogenesis through phosphorylation of eukaryotic translation initiation factor 2 alpha. J Bone Miner Metab 31, 618–628 (2013). https://doi.org/10.1007/s00774-013-0450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0450-0

Keywords

Navigation