Skip to main content

Advertisement

Log in

Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens?

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Key determinants for the development of an allergic response to an otherwise ‘harmless’ food protein involve different factors like the predisposition of the individual, the timing, the dose, the route of exposure, the intrinsic properties of the allergen, the food matrix (e.g. lipids) and the allergen modification by food processing. Various physicochemical parameters can have an impact on the allergenicity of animal proteins. Following our previous review on how physicochemical parameters shape plant protein allergenicity, the same analysis was proceeded here for animal allergens.

We found that each parameter can have variable effects, ranging on an axis from allergenicity enhancement to resolution, depending on its nature and the allergen. While glycosylation and phosphorylation are common, both are not universal traits of animal allergens. High molecular structures can favour allergenicity, but structural loss and uncovering hidden epitopes can also have a similar impact. We discovered that there are important knowledge gaps in regard to physicochemical parameters shaping protein allergenicity both from animal and plant origin, mainly because the comparability of the data is poor. Future biomolecular studies of exhaustive, standardised design together with strong validation part in the clinical context, together with data integration model systems will be needed to unravel causal relationships between physicochemical properties and the basis of protein allergenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2D:

Secondary structure

3D:

Tertiary structure

4D:

Quaternary structure

BAT:

Basophil activation test

DBPCFC:

Double-blind placebo-controlled food challenge

EAST:

Enzyme allergosorbent test

ELISA:

Enzyme-linked immunosorbent assay

HPP:

High-pressure processing

HHP:

High-hydrostatic pressure

IgE:

Immunoglobulin E

IgG:

Immunoglobulin G

OFC:

Open food challenge

PEF:

Pulsed electric fields

PTM:

Post-translational modifications

PUV:

Pulsed ultraviolet

RAST:

Radioallergosorbent test

RBL:

Rat basophilic leukaemia

SPT:

Skin prick tests

Th1, Th2:

T helper cell type 1 or 2

WHO/IUIS:

World Health Organiztion/International Union of Immunological Societies

References

  1. Berin MC, Sampson HA (2013) Food allergy: an enigmatic epidemic. Trends Immunol 34:390–397. https://doi.org/10.1016/j.it.2013.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sampson HA (2016) Food allergy: past, present and future. Allergol Int 65:363–369. https://doi.org/10.1016/j.alit.2016.08.006

    Article  PubMed  Google Scholar 

  3. Sicherer SH, Sampson HA (2018) Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 141:41–58. https://doi.org/10.1016/j.jaci.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  4. Costa J, Bavaro SL, Benedé S, Diaz-Perales A, Bueno-Diaz C, Gelencser E, Klueber J, Larré C, Lozano-Ojalvo D, Lupi R, Mafra I, Mazzucchelli G, Molina E, Monaci L, Martín-Pedraza L, Piras C, Rodrigues PM, Roncada P, Schrama D, Cirkovic-Velickovic T, Verhoeckx K, Villa C, Kuehn A, Hoffmann-Sommergruber K, Holzhauser T (2020) Are physicochemical properties shaping the allergenic potency of plant allergens? Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-020-08810-9

    Article  PubMed  Google Scholar 

  5. Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H (2008) Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 121:847-852.e847. https://doi.org/10.1016/j.jaci.2008.01.025

    Article  CAS  PubMed  Google Scholar 

  6. The Database of Allergen Families, Medical University of Vienna, Vienna, Austria (2020) http://www.meduniwien.ac.at/allfam/. Accessed 6 April 2020

  7. World Health Organization/International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-committee (2020) http://www.allergen.org/. Accessed 31 March 2020

  8. Wang CLA, Coluccio LM (2010) New insights into the regulation of the actin cytoskeleton by tropomyosin. Int Rev Cell Mol Biol 281:91–128. https://doi.org/10.1016/S1937-6448(10)81003-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gimona M (2008) Dimerization of tropomyosins. In: Gunning P (ed) Tropomyosin. Springer, New York, NY, pp 73–84. https://doi.org/10.1007/978-0-387-85766-4_6

    Chapter  Google Scholar 

  10. Reese G, Ayuso R, Lehrer SB (1999) Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol 119:247–258. https://doi.org/10.1159/000024201

    Article  CAS  PubMed  Google Scholar 

  11. Klueber J, Costa J, Randow S, Codreanu-Morel F, Verhoeckx K, Bindslev-Jensen C, Ollert M, Hoffmann-Sommergruber K, Morisset M, Holzhauser T, Kuehn A (2020) Homologous tropomyosins from vertebrate and invertebrate: recombinant calibrator proteins in functional biological assays for tropomyosin allergenicity assessment of novel animal foods. Clin Exp Allergy 50:105–116. https://doi.org/10.1111/cea.13503

    Article  CAS  PubMed  Google Scholar 

  12. Miegel A, Kobayashi T, Maéda Y (1992) Isolation, purification and partial characterization of tropomyosin and troponin subunits from the lobster tail muscle. J Muscle Res Cell Motil 13:608–618. https://doi.org/10.1007/bf01738250

    Article  CAS  PubMed  Google Scholar 

  13. Mills ENC, Johnson PE, Alexeev Y (2012) Food Antigens. In: James JM, Burks W, Eigenmann P (eds) Food Allergy. W.B. Saunders, Edinburgh, pp 15–32. https://doi.org/10.1016/B978-1-4377-1992-5.00002-8

    Chapter  Google Scholar 

  14. Liu R, Holck AL, Yang E, Liu C, Xue W (2013) Tropomyosin from tilapia (Oreochromis mossambicus) as an allergen. Clin Exp Allergy 43:365–377. https://doi.org/10.1111/cea.12056

    Article  CAS  PubMed  Google Scholar 

  15. González-Fernández J, Alguacil-Guillén M, Cuéllar C, Daschner A (2018) Possible allergenic role of tropomyosin in patients with adverse reactions after fish intake. Immunol Invest 47:416–429. https://doi.org/10.1080/08820139.2018.1451882

    Article  CAS  PubMed  Google Scholar 

  16. Ruethers T, Taki AC, Karnaneedi S, Nie S, Kalic T, Dai D, Daduang S, Leeming M, Williamson NA, Breiteneder H, Mehr SS, Kamath SD, Campbell DE, Lopata AL (2020) Expanding the allergen repertoire of salmon and catfish. Allergy (in press). https://doi.org/10.1111/all.14574

    Article  Google Scholar 

  17. Broekman H, Verhoeckx KC, den Hartog Jager CF, Kruizinga AG, Pronk-Kleinjan M, Remington BC, Bruijnzeel-Koomen CA, Houben GF, Knulst AC (2016) Majority of shrimp-allergic patients are allergic to mealworm. J Allergy Clin Immunol 137:1261–1263. https://doi.org/10.1016/j.jaci.2016.01.005

    Article  PubMed  Google Scholar 

  18. Hauser M, Roulias A, Ferreira F, Egger M (2010) Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol 6:1–14. https://doi.org/10.1186/1710-1492-6-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rahman AMA, Kamath S, Lopata AL, Helleur RJ (2010) Analysis of the allergenic proteins in black tiger prawn (Penaeus monodon) and characterization of the major allergen tropomyosin using mass spectrometry. Rapid Commun Mass Spectrom 24:2462–2470. https://doi.org/10.1002/rcm.4664

    Article  CAS  PubMed  Google Scholar 

  20. Moral L, Toral T (2016) Sensitisation to mites and other animal-derived home aeroallergens in children and its concordance as a measure of covariation of sensitisation. Allergol Immunopathol 44:427–432. https://doi.org/10.1016/j.aller.2016.02.004

    Article  CAS  Google Scholar 

  21. Remington BC, Westerhout J, Meima MY, Blom WM, Kruizinga AG, Wheeler MW, Taylor SL, Houben GF, Baumert JL (2020) Updated population minimal eliciting dose distributions for use in risk assessment of 14 priority food allergens. Food Chem Toxicol 139:111259. https://doi.org/10.1016/j.fct.2020.111259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Westerhout J, Baumert JL, Blom WM, Allen KJ, Ballmer-Weber B, Crevel RWR, Dubois AEJ, Fernández-Rivas M, Greenhawt MJ, Hourihane JOB, Koplin JJ, Kruizinga AG, Le T-M, Sampson HA, Shreffler WG, Turner PJ, Taylor SL, Houben GF, Remington BC (2019) Deriving individual threshold doses from clinical food challenge data for population risk assessment of food allergens. J Allergy Clin Immunol 144:1290–1309. https://doi.org/10.1016/j.jaci.2019.07.046

    Article  CAS  PubMed  Google Scholar 

  23. Ballmer-Weber BK, Fernandez-Rivas M, Beyer K, Defernez M, Sperrin M, Mackie AR, Salt LJ, Hourihane JOB, Asero R, Belohlavkova S, Kowalski M, de Blay F, Papadopoulos NG, Clausen M, Knulst AC, Roberts G, Popov T, Sprikkelman AB, Dubakiene R, Vieths S, van Ree R, Crevel R, Mills ENC (2015) How much is too much? Threshold dose distributions for 5 food allergens. J Allergy Clin Immunol 135:964–971. https://doi.org/10.1016/j.jaci.2014.10.047

    Article  CAS  PubMed  Google Scholar 

  24. Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, Eigenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, Hage M, Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M (2016) EAACI molecular allergology user’s guide. Pediatr Allergy Immunol 27:1–250. https://doi.org/10.1111/pai.12563

    Article  PubMed  Google Scholar 

  25. Stephen JN, Sharp MF, Ruethers T, Taki A, Campbell DE, Lopata AL (2017) Allergenicity of bony and cartilaginous fish – molecular and immunological properties. Clin Exp Allergy 47:300–312. https://doi.org/10.1111/cea.12892

    Article  CAS  PubMed  Google Scholar 

  26. Wopfner N, Dissertori O, Ferreira F, Lackner P (2007) Calcium-binding proteins and their role in allergic diseases. Immunol Allerg Clin North Am 27:29–44. https://doi.org/10.1016/j.iac.2006.10.003

    Article  Google Scholar 

  27. Griesmeier U, Vázquez-Cortés S, Bublin M, Radauer C, Ma Y, Briza P, Fernández-Rivas M, Breiteneder H (2010) Expression levels of parvalbumins determine allergenicity of fish species. Allergy 65:191–198. https://doi.org/10.1111/j.1398-9995.2009.02162.x

    Article  CAS  PubMed  Google Scholar 

  28. Kuehn A, Swoboda I, Arumugam K, Hilger C, Hentges F (2014) Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol 5:179. https://doi.org/10.3389/fimmu.2014.00179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuehn A, Scheuermann T, Hilger C, Hentges F (2010) Important variations in parvalbumin content in common fish species: a factor possibly contributing to variable allergenicity. Int Arch Allergy Immunol 153:359–366. https://doi.org/10.1159/000316346

    Article  CAS  PubMed  Google Scholar 

  30. Jenkins JA, Breiteneder H, Mills ENC (2007) Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J Allergy Clin Immunol 120:1399–1405. https://doi.org/10.1016/j.jaci.2007.08.019

    Article  CAS  PubMed  Google Scholar 

  31. Swain AL, Kretsinger RH, Amma EL (1989) Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6-A resolution. J Biol Chem 264:16620–16628. https://www.jbc.org/content/264/28/16620

  32. Taylor SL, Hefle SL, Bindslev-Jensen C, Atkins FM, Andre C, Bruijnzeel-koomen C, Burks AW, Bush RK, Ebisawa M, Eigenmann PA, Host A, Hourihane JOB, Isolauri E, Hill DJ, Knulst A, Lack G, Sampson HA, Moneret-Vautrin DA, Rance F, Vadas PA, Yunginger JW, Zeiger RS, Salminen JW, Madsen C, Abbott P (2004) A consensus protocol for the determination of the threshold doses for allergenic foods: how much is too much? Clin Exp Allergy 34:689–695. https://doi.org/10.1111/j.1365-2222.2004.1886.x

    Article  CAS  PubMed  Google Scholar 

  33. Van Do T, Elsayed S, Florvaag E, Hordvik I, Endresen C (2005) Allergy to fish parvalbumins: studies on the cross-reactivity of allergens from 9 commonly consumed fish. J Allergy Clin Immunol 116:1314–1320. https://doi.org/10.1016/j.jaci.2005.07.033

    Article  CAS  PubMed  Google Scholar 

  34. Ruethers T, Raith M, Sharp MF, Koeberl M, Stephen JN, Nugraha R, Le TTK, Quirce S, Nguyen HXM, Kamath SD, Mehr SS, Campbell DE, Bridges CR, Taki AC, Swoboda I, Lopata AL (2018) Characterization of Ras k 1 a novel major allergen in Indian mackerel and identification of parvalbumin as the major fish allergen in 33 Asia-Pacific fish species. Clin Exp Allergy 48:452–463. https://doi.org/10.1111/cea.13069

    Article  CAS  PubMed  Google Scholar 

  35. Bugajska-Schretter A, Grote M, Vangelista L, Valent P, Sperr WR, Rumpold H, Pastore A, Reichelt R, Valenta R, Spitzauer S (2000) Purification, biochemical, and immunological characterisation of a major food allergen: different immunoglobulin E recognition of the apo- and calcium-bound forms of carp parvalbumin. Gut 46:661–669. https://doi.org/10.1136/gut.46.5.661

    Article  CAS  PubMed  Google Scholar 

  36. Kalic T, Morel-Codreanu F, Radauer C, Ruethers T, Taki AC, Swoboda I, Hilger C, Hoffmann-Sommergruber K, Ollert M, Hafner C, Lopata AL, Morisset M, Breiteneder H, Kuehn A (2019) Patients allergic to fish tolerate ray based on the low allergenicity of its parvalbumin. J Allergy Clin Immunol 7:500-508.e511. https://doi.org/10.1016/j.jaip.2018.11.011

    Article  Google Scholar 

  37. Kuehn A, Codreanu-Morel F, Lehners-Weber C, Doyen V, Gomez-André SA, Bienvenu F, Fischer J, Ballardini N, Hage M, Perotin JM, Silcret-Grieu S, Chabane H, Hentges F, Ollert M, Hilger C, Morisset M (2016) Cross-reactivity to fish and chicken meat – a new clinical syndrome. Allergy 71:1772–1781. https://doi.org/10.1111/all.12968

    Article  CAS  PubMed  Google Scholar 

  38. Ballardini N, Nopp A, Hamsten C, Vetander M, Melén E, Nilsson C, Ollert M, Flohr C, Kuehn A, van Hage M (2017) Anaphylactic reactions to novel foods: case report of a child with severe crocodile meat allergy. Pediatrics 139:e20161404. https://doi.org/10.1542/peds.2016-1404

    Article  PubMed  Google Scholar 

  39. Hilger C, Grigioni F, Thill L, Mertens L, Hentges F (2002) Severe IgE-mediated anaphylaxis following consumption of fried frog legs: definition of α-parvalbumin as the allergen in cause. Allergy 57:1053–1058. https://doi.org/10.1034/j.1398-9995.2002.23677.x

    Article  CAS  PubMed  Google Scholar 

  40. Kuehn A, Lehners C, Hilger C, Hentges F (2009) Food allergy to chicken meat with IgE reactivity to muscle α-parvalbumin. Allergy 64:1557–1558. https://doi.org/10.1111/j.1398-9995.2009.02094.x

    Article  CAS  PubMed  Google Scholar 

  41. Aas K, Elsayed SM (1969) Characterization of a major allergen (cod). Effect of enzymic hydrolysis on the allergenic activity. J Allergy 44:333–343. https://doi.org/10.1016/0021-8707(69)90025-2

    Article  CAS  PubMed  Google Scholar 

  42. Aas K, Lundkvist U (1973) The radioallergosorbent test with a purified allergen from codfish. Clin Exp Allergy 3:255–261. https://doi.org/10.1111/j.1365-2222.1973.tb01331.x

    Article  CAS  Google Scholar 

  43. Elsayed SM, Aas K (1970) Characterization of a major allergen (Cod). Chemical composition and immunological properties. Int Arch Allergy Immunol 38:536–548. https://doi.org/10.1159/000230307

    Article  CAS  Google Scholar 

  44. Kuehn A, Hutt-Kempf E, Hilger C, Hentges F (2011) Clinical monosensitivity to salmonid fish linked to specific IgE-epitopes on salmon and trout beta-parvalbumins. Allergy 66:299–301. https://doi.org/10.1111/j.1398-9995.2010.02463.x

    Article  CAS  PubMed  Google Scholar 

  45. Das Dores S, Chopin C, Villaume C, Fleurence J, Guéant JL (2002) A new oligomeric parvalbumin allergen of Atlantic cod (Gad mI) encoded by a gene distinct from that of Gad cI. Allergy 57:79–83. https://doi.org/10.1034/j.1398-9995.57.s72.1.x|

    Article  PubMed  Google Scholar 

  46. Rosmilah M, Shahnaz M, Masita A, Noormalin A, Jamaludin M (2005) Identification of major allergens of two species of local snappers: Lutjanus argentimaculatus (merah/red snapper) and Lutjanus johnii (jenahak/golden snapper). Trop Biomed 22:171–177

    CAS  PubMed  Google Scholar 

  47. Untersmayr E, Jensen-Jarolim E (2008) The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol 121:1301–1308. https://doi.org/10.1016/j.jaci.2008.04.025

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carral CP, Martín-Lázaro J, Ledesma A, de la Torre F (2010) Occupational asthma caused by turbot allergy in 3 fish-farm workers. J Investig Allergol Clin Immunol 20:349–351. http://www.jiaci.org/issues/vol20issue4/vol20issue04-11.htm

  49. Jeebhay MF, Cartier A (2010) Seafood workers and respiratory disease: an update. Curr Opin Allergy Clin Immunol 10:104–113. https://doi.org/10.1097/ACI.0b013e3283373bd0

    Article  PubMed  Google Scholar 

  50. Strong SJ, Ellington WR (1995) Isolation and sequence analysis of the gene for arginine kinase from the chelicerate arthropod, Limulus polyphemus: insights into catalytically important residues. Biochim Biophys Acta - Protein Struct Molec Enzym 1246:197–200. https://doi.org/10.1016/0167-4838(94)00218-6

    Article  Google Scholar 

  51. Azzi A, Clark SA, Ellington WR, Chapman MS (2004) The role of phosphagen specificity loops in arginine kinase. Protein Sci 13:575–585. https://doi.org/10.1110/ps.03428304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang Y, Liu G-Y, Yang H, Hu M-J, Cao M-J, Su W-J, Jin T, Liu G-M (2019) Crystal structure determination of Scylla paramamosain arginine kinase, an allergen that may cause cross-reactivity among invertebrates. Food Chem 271:597–605. https://doi.org/10.1016/j.foodchem.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  53. Ayuso R, Sánchez-Garcia S, Lin J, Fu Z, Ibáñez MD, Carrillo T, Blanco C, Goldis M, Bardina L, Sastre J, Sampson HA (2010) Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age. J Allergy Clin Immunol 125:1286-1293.e1283. https://doi.org/10.1016/j.jaci.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  54. Bauermeister K, Wangorsch A, Garoffo LP, Reuter A, Conti A, Taylor SL, Lidholm J, DeWitt ÅM, Enrique E, Vieths S, Holzhauser T, Ballmer-Weber B, Reese G (2011) Generation of a comprehensive panel of crustacean allergens from the North Sea shrimp Crangon crangon. Mol Immunol 48:1983–1992. https://doi.org/10.1016/j.molimm.2011.06.216

    Article  CAS  PubMed  Google Scholar 

  55. Yu C-J, Lin Y-F, Chiang B-L, Chow L-P (2003) Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol 170:445–453. https://doi.org/10.4049/jimmunol.170.1.445

    Article  CAS  PubMed  Google Scholar 

  56. Sookrung N, Chaicumpa W, Tungtrongchitr A, Vichyanond P, Bunnag C, Ramasoota P, Tongtawe P, Sakolvaree Y, Tapchaisri P (2006) Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ Health Perspect 114:875–880. https://doi.org/10.1289/ehp.8650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hales BJ, Martin AC, Pearce LJ, Laing IA, Hayden CM, Goldblatt J, Le Souëf PN, Thomas WR (2006) IgE and IgG anti-house dust mite specificities in allergic disease. J Allergy Clin Immunol 118:361–367. https://doi.org/10.1016/j.jaci.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  58. Giuffrida MG, Villalta D, Mistrello G, Amato S, Asero R (2014) Shrimp allergy beyond Tropomyosin in Italy: clinical relevance of Arginine Kinase, Sarcoplasmic calcium binding protein and Hemocyanin. Eur Ann Allergy Clin Immunol 46:172–177. https://pdfs.semanticscholar.org/8bbe/3555bcd4198868baf4552459c98593fdc368.pdf

  59. Monaci L, Tregoat V, van Hengel AJ, Anklam E (2006) Milk allergens, their characteristics and their detection in food: a review. Eur Food Res Technol 223:149–179. https://doi.org/10.1007/s00217-005-0178-8

    Article  CAS  Google Scholar 

  60. Restani P, Ballabio C, Di Lorenzo C, Tripodi S, Fiocchi A (2009) Molecular aspects of milk allergens and their role in clinical events. Anal Bioanal Chem 395:47–56. https://doi.org/10.1007/s00216-009-2909-3

    Article  CAS  PubMed  Google Scholar 

  61. Fox P (2001) Milk proteins as food ingredients. Int J Dairy Technol 54:41–55. https://doi.org/10.1046/j.1471-0307.2001.00014.x

    Article  CAS  Google Scholar 

  62. Barłowska J, Szwajkowska M, Litwińczuk Z, Król J (2011) Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr Rev Food Sci Food Saf 10:291–302. https://doi.org/10.1111/j.1541-4337.2011.00163.x

    Article  CAS  Google Scholar 

  63. Sood SM, Herbert PJ, Slatter CW (1997) Structural studies on casein micelles of human milk: dissociation of β-casein of different phosphorylation levels induced by cooling and ethylenediaminetetraacetate. J Dairy Sci 80:628–633. https://doi.org/10.3168/jds.S0022-0302(97)75980-0

    Article  CAS  PubMed  Google Scholar 

  64. Zicarelli L (2004) Buffalo milk: its properties, dairy yield and mozzarella production. Vet Res Commun 28:127–135. https://doi.org/10.1023/B:VERC.0000045390.81982.4d

    Article  PubMed  Google Scholar 

  65. Hinz K, O’Connor PM, Huppertz T, Ross RP, Kelly AL (2012) Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk. J Dairy Res 79:185–191. https://doi.org/10.1017/S0022029912000015

    Article  CAS  PubMed  Google Scholar 

  66. Ehlayel MS, Hazeima KA, Al-Mesaifri F, Bener A (2011) Camel milk: an alternative for cow’s milk allergy in children. Allergy Asthma Proc 32:255–258. https://doi.org/10.2500/aap.2011.32.3429

    Article  PubMed  Google Scholar 

  67. Restani P, Gaiaschi A, Plebani A, Beretta B, Cavagni G, Fiocchi A, Poiesi C, Velonà T, Ugazio AG, Galli CL (1999) Cross-reactivity between milk proteins from different animal species. Clin Exp Allergy 29:997–1004. https://doi.org/10.1046/j.1365-2222.1999.00563.x

    Article  CAS  PubMed  Google Scholar 

  68. Bernard H (1999) IgE cross-reactivity with caseins from different species in humans allergic to cow’s milk. Food Agric Immunol 11:101–111. https://doi.org/10.1080/09540109999960

    Article  CAS  Google Scholar 

  69. Chruszcz M, Mikolajczak K, Mank N, Majorek KA, Porebski PJ, Minor W (2013) Serum albumins - unusual allergens. Biochim Biophys Acta 1830:5375–5381. https://doi.org/10.1016/j.bbagen.2013.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, Chruszcz M, Minor W (2012) Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol 52:174–182. https://doi.org/10.1016/j.molimm.2012.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Choi G-S, Kim J-H, Lee H-N, Sung J-M, Lee J-W, Park H-S (2009) Occupational asthma caused by inhalation of bovine serum albumin powder. Allergy Asthma Immunol Res 1:45–47. https://doi.org/10.4168/aair.2009.1.1.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Voltolini S, Spigno F, Cioè A, Cagnati P, Bignardi D, Minale P (2013) Bovine serum albumin: A double allergy risk. Eur Ann Allergy Clin Immunol 45:144–147. http://www.eurannallergyimm.com/cont/journals-articles/84/volume-bovine-serum-albumin-double-allergy.asp

  73. Liccardi G, Asero R, D’Amato M, D’Amato G (2011) Role of sensitization to mammalian serum albumin in allergic disease. Curr Allergy Asthma Rep 11:421–426. https://doi.org/10.1007/s11882-011-0214-7

    Article  CAS  PubMed  Google Scholar 

  74. Martelli A, De Chiara A, Corvo M, Restani P, Fiocchi A (2002) Beef allergy in children with cow’s milk allergy; cow’s milk allergy in children with beef allergy. Ann Allergy Asthma Immunol 89:38–43. https://doi.org/10.1016/S1081-1206(10)62121-7

    Article  PubMed  Google Scholar 

  75. Posthumus J, James HR, Lane CJ, Matos LA, Platts-Mills TAE, Commins SP (2013) Initial description of pork-cat syndrome in the United States. J Allergy Clin Immunol 131:923–925. https://doi.org/10.1016/j.jaci.2012.12.665

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hilger C, Kohnen M, Grigioni F, Lehners C, Hentges F (1997) Allergic cross-reactions between cat and pig serum albumin. Allergy 52:179–187. https://doi.org/10.1111/j.1398-9995.1997.tb00972.x

    Article  CAS  PubMed  Google Scholar 

  77. Quirce S, Marañón F, Umpiérrez A, De Las Heras M, Fernández-Caldas E, Sastre J (2001) Chicken serum albumin (Gal d 5*) is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome. Allergy 56:754–762. https://doi.org/10.1034/j.1398-9995.2001.056008754.x|

    Article  CAS  PubMed  Google Scholar 

  78. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094. https://doi.org/10.1073/pnas.92.15.7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mine Y, Rupa P (2004) Immunological and biochemical properties of egg allergens. Worlds Poult Sci J 60:321–330. https://doi.org/10.1079/WPS200420

    Article  Google Scholar 

  80. Lesnierowski G, Kijowski J (2007) Lysozyme. In: Huopalahti R, López-Fandiño R, Anton M, Schade R (eds) Bioactive Egg Compounds. Springer, Berlin, Heidelberg, pp 33–42. https://doi.org/10.1007/978-3-540-37885-3_6

    Chapter  Google Scholar 

  81. Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR (1965) Structure of Hen egg-white lysozyme: a three-dimensional fourier synthesis at 2 Å resolution. Nature 206:757–761. https://doi.org/10.1038/206757a0

    Article  CAS  PubMed  Google Scholar 

  82. Young ACM, Tilton RF, Dewan JC (1994) Thermal expansion of hen egg-white lysozyme: comparison of the 1.9 Å resolution structures of the tetragonal form of the enzyme at 100 K and 298 K. J Mol Biol 235:302–317. https://doi.org/10.1016/S0022-2836(05)80034-8

    Article  CAS  PubMed  Google Scholar 

  83. Geng F, Wang J, Liu D, Jin Y, Ma M (2017) Identification of N-glycosites in chicken egg white proteins using an Omics strategy. J Agric Food Chem 65:5357–5364. https://doi.org/10.1021/acs.jafc.7b01706

    Article  CAS  PubMed  Google Scholar 

  84. Asperger A, Marx K, Albers C, Molin L, Pinato O (2015) Low abundant N-linked glycosylation in hen egg white lysozyme is localized at nonconsensus sites. J Proteome Res 14:2633–2641. https://doi.org/10.1021/acs.jproteome.5b00175

    Article  CAS  PubMed  Google Scholar 

  85. Escudero C, Quirce S, Fernández-Nieto M, de Miguel J, Cuesta J, Sastre J (2003) Egg white proteins as inhalant allergens associated with baker’s asthma. Allergy 58:616–620. https://doi.org/10.1034/j.1398-9995.2003.00201.x

  86. Pérez-Calderón R, Gonzalo-Garijo M, Lamilla-Yerga A, Mangas-Santos R, Moreno-Gastón I (2007) Recurrent angioedema due to lysozyme allergy J Investig Allergol Clin Immunol 17:264–266. http://www.jiaci.org/summary/vol17-issue4-num241

  87. Stuart DI, Acharya KR, Walker NPC, Smith SG, Lewis M, Phillips DC (1986) α-Lactalbumin possesses a novel calcium binding loop. Nature 324:84–87. https://doi.org/10.1038/324084a0

    Article  CAS  PubMed  Google Scholar 

  88. Permyakov EA, Berliner LJ (2000) α-Lactalbumin: structure and function. FEBS Lett 473:269–274. https://doi.org/10.1016/S0014-5793(00)01546-5

    Article  CAS  PubMed  Google Scholar 

  89. Hochwallner H, Schulmeister U, Swoboda I, Spitzauer S, Valenta R (2014) Cow’s milk allergy: from allergens to new forms of diagnosis, therapy and prevention. Methods 66:22–33. https://doi.org/10.1016/j.ymeth.2013.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hochwallner H, Schulmeister U, Swoboda I, Focke-Tejkl M, Civaj V, Balic N, Nystrand M, Härlin A, Thalhamer J, Scheiblhofer S (2010) Visualization of clustered IgE epitopes on α-lactalbumin. J Allergy Clin Immunol 125:1279-1285 e1279. https://doi.org/10.1016/j.jaci.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  91. Shoormasti RS, Fazlollahi M, Barzegar S, Teymourpour P, Yazdanyar Z, Lebaschi Z, Nourizadeh M, Tazesh B, Movahedi M, Kashani H, Pourpak Z, Moin M (2016) The most common cow’s milk allergenic proteins with respect to allergic symptoms in Iranian patients. Iran J Allergy Asthma Immunol 15:161–165. https://ijaai.tums.ac.ir/index.php/ijaai/article/view/686

  92. Aisen P, Listowsky I (1980) Iron transport and storage proteins. Ann Rev Biochem 49:357–393. https://doi.org/10.1146/annurev.bi.49.070180.002041

    Article  CAS  PubMed  Google Scholar 

  93. Lambert LA, Perri H, Halbrooks PJ, Mason AB (2005) Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp Biochem Physiol B-Biochem Mol Biol 142:129–141. https://doi.org/10.1016/j.cbpb.2005.07.007

    Article  CAS  PubMed  Google Scholar 

  94. Kurokawa H, Mikami B, Hirose M (1995) Crystal structure of diferric hen ovotransferrin at 2.4 Å resolution. J Mol Biol 254:196–207. https://doi.org/10.1006/jmbi.1995.0611

    Article  CAS  PubMed  Google Scholar 

  95. Ibrahim HR (2000) Ovotransferrin. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Raton, FL, pp 211–226

    Google Scholar 

  96. Williams J, Elleman TC, Kingston IB, Wilkins AG, Kuhn KA (1982) The primary structure of hen ovotransferrin. Eur J Biochem 122:297–303. https://doi.org/10.1111/j.1432-1033.1982.tb05880.x

    Article  CAS  PubMed  Google Scholar 

  97. Kim J, Lee J, Park M-R, Han Y, Shin M, Ahn K (2014) Special consideration is required for the component-resolved diagnosis of egg allergy in infants. Ann Allergy Asthma Immunol 112:53–57. https://doi.org/10.1016/j.anai.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  98. Baker EN, Baker HM (2005) Lactoferrin. Cell Mol Life Sci 62:2531. https://doi.org/10.1007/s00018-005-5368-9

    Article  CAS  PubMed  Google Scholar 

  99. Pakdaman R, Petitjean M, El Hage Chahine J-M (1998) Transferrins. Eur J Biochem 254:144–153. https://doi.org/10.1046/j.1432-1327.1998.2540144.x

    Article  CAS  PubMed  Google Scholar 

  100. Gaudin J-C, Rabesona H, Choiset Y, Yeretssian G, Chobert J-M, Sakanyan V, Drouet M, Haertlé T (2008) Assessment of the immunoglobulin E-mediated immune response to milk-specific proteins in allergic patients using microarrays. Clin Exp Allergy 38:686–693. https://doi.org/10.1111/j.1365-2222.2008.02952.x

    Article  CAS  PubMed  Google Scholar 

  101. Ganfornina MD, Sanchez D, Greene LH, Flower DR (2006) The lipocalin protein family: protein sequence, structure and relationship to the calycin superfamily. In: Åkerstrom B, Borregaard N, Flower D, Salier JP (eds) Lipocalins. Landes Bioscience, Georgetown, pp 17–27. https://doi.org/10.1201/9781498712736

    Chapter  Google Scholar 

  102. Grzyb J, Latowski D, Strzałka K (2006) Lipocalins - a family portrait. J Plant Physiol 163:895–915. https://doi.org/10.1016/j.jplph.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  103. Virtanen T, Kinnunen T, Rytkönen-Nissinen M (2012) Mammalian lipocalin allergens - insights into their enigmatic allergenicity. Clin Exp Allergy 42:494–504. https://doi.org/10.1111/j.1365-2222.2011.03903.x

    Article  CAS  PubMed  Google Scholar 

  104. Rouvinen J, Virtanen T, Mäntyjärvi R (2001) Search for the determinants of allergenicity in proteins of the lipocalin family. J Chromatogr B: Biomed Sci Appl 756:199–206. https://doi.org/10.1016/S0378-4347(01)00109-8

    Article  CAS  Google Scholar 

  105. Hilger C, Kuehn A, Hentges F (2012) Animal lipocalin allergens. Curr Allergy Asthma Rep 12:438–447. https://doi.org/10.1007/s11882-012-0283-2

    Article  CAS  PubMed  Google Scholar 

  106. Weng Y-C, Wang G, Messing RO, Chou W-H (2015) Identification of lipocalin-2 as a PKCδ phosphorylation substrate in neutrophils. J Biomed Sci 22:21. https://doi.org/10.1186/s12929-015-0129-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hilger C, Swiontek K, Arumugam K, Lehners C, Hentges F (2012) Identification of a new major dog allergen highly cross-reactive with Fel d 4 in a population of cat- and dog-sensitized patients. J Allergy Clin Immunol 129:1149-1151.e1142. https://doi.org/10.1016/j.jaci.2011.10.017

    Article  CAS  PubMed  Google Scholar 

  108. Nilsson OB, Binnmyr J, Zoltowska A, Saarne T, van Hage M, Grönlund H (2012) Characterization of the dog lipocalin allergen Can f 6: the role in cross-reactivity with cat and horse. Allergy 67:751–757. https://doi.org/10.1111/j.1398-9995.2012.02826.x

    Article  CAS  PubMed  Google Scholar 

  109. Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta-Protein Struct Molec Enzym 1482:9–24. https://doi.org/10.1016/S0167-4838(00)00148-5

    Article  CAS  Google Scholar 

  110. Lakshmi B, Mishra M, Srinivasan N, Archunan G (2015) Structure-based phylogenetic analysis of the Lipocalin superfamily. PLoS ONE 10:e0135507. https://doi.org/10.1371/journal.pone.0135507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Virtanen T (2001) Lipocalin allergens. Allergy 56:48–51. https://doi.org/10.1034/j.1398-9995.2001.00915.x

    Article  PubMed  Google Scholar 

  112. Jensen-Jarolim E, Pacios LF, Bianchini R, Hofstetter G, Roth-Walter F (2016) Structural similarities of human and mammalian lipocalins, and their function in innate immunity and allergy. Allergy 71:286–294. https://doi.org/10.1111/all.12797

    Article  CAS  PubMed  Google Scholar 

  113. Bello M, Fragoso-Vázquez MJ, Correa Basurto J (2016) Energetic and conformational features linked to the monomeric and dimeric states of bovine BLG. Int J Biol Macromol 92:625–636. https://doi.org/10.1016/j.ijbiomac.2016.07.071

    Article  CAS  PubMed  Google Scholar 

  114. Järvinen K-M, Chatchatee P, Bardina L, Beyer K, Sampson HA (2001) IgE and IgG binding epitopes on α-lactalbumin and β-lactoglobulin in cow’s milk allergy. Int Arch Allergy Immunol 126:111–118. https://doi.org/10.1159/000049501

    Article  PubMed  Google Scholar 

  115. Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46:D624–D632. https://doi.org/10.1093/nar/gkx1134

    Article  CAS  PubMed  Google Scholar 

  116. Laskowski M, Kato I (1980) Protein inhibitors of proteinases. Ann Rev Biochem 49:593–626. https://doi.org/10.1146/annurev.bi.49.070180.003113

    Article  CAS  PubMed  Google Scholar 

  117. Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716. https://doi.org/10.1042/bj20031825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kato I, Schrode J, Kohr WJ, Laskowski M (1987) Chicken ovomucoid: determination of its amino acid sequence, determination of the trypsin reactive site, and preparation of all three of its domains. Biochemistry 26:193–201. https://doi.org/10.1021/bi00375a027

    Article  CAS  PubMed  Google Scholar 

  119. Rupa P, Nakamura S, Mine Y (2007) Genetically glycosylated ovomucoid third domain can modulate immunoglobulin E antibody production and cytokine response in BALB/c mice. Clin Exp Allergy 37:918–928. https://doi.org/10.1111/j.1365-2222.2007.02720.x

    Article  CAS  PubMed  Google Scholar 

  120. Matsuda T, Nakamura R, Nakashima I, Hasegawa Y, Shimokata K (1985) Human IgE antibody to the carbohydrate-containing third domain of chicken ovomucoid. Biochem Biophys Res Commun 129:505–510. https://doi.org/10.1016/0006-291X(85)90180-9

    Article  CAS  PubMed  Google Scholar 

  121. Caubet J-C, Wang J (2011) Current understanding of egg allergy. Pediatr Clin North Am 58:427–443. https://doi.org/10.1016/j.pcl.2011.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tan JW-L, Campbell DE, Turner PJ, Kakakios A, Wong M, Mehr S, Joshi P (2013) Baked egg food challenges - clinical utility of skin test to baked egg and ovomucoid in children with egg allergy. Clin Exp Allergy 43:1189–1195. https://doi.org/10.1111/cea.12153

    Article  PubMed  Google Scholar 

  123. Irving JA, Pike RN, Lesk AM, Whisstock JC (2000) Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 10:1845–1864. https://doi.org/10.1101/gr.147800

    Article  CAS  PubMed  Google Scholar 

  124. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7:216. https://doi.org/10.1186/gb-2006-7-5-216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nisbet AD, Saundry RH, Moir AJG, Fothergill LA, Fothergill JE (1981) The complete amino-acid sequence of hen ovalbumin. Eur J Biochem 115:335–345. https://doi.org/10.1111/j.1432-1033.1981.tb05243.x

    Article  CAS  PubMed  Google Scholar 

  126. An HJ, Peavy TR, Hedrick JL, Lebrilla CB (2003) Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 75:5628–5637. https://doi.org/10.1021/ac034414x

    Article  CAS  PubMed  Google Scholar 

  127. Stein PE, Leslie AGW, Finch JT, Carrell RW (1991) Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. J Mol Biol 221:941–959. https://doi.org/10.1016/0022-2836(91)80185-W

    Article  CAS  PubMed  Google Scholar 

  128. Lin Y-T, Wu C-T, Huang J-L, Cheng J-H, Yeh K-W (2016) Correlation of ovalbumin of egg white components with allergic diseases in children. J Microbiol Immunol Infect 49:112–118. https://doi.org/10.1016/j.jmii.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  129. Pelz BJ, Bryce PJ (2015) Pathophysiology of food allergy. Pediatr Clin N Am 62:1363–1375. https://doi.org/10.1016/j.pcl.2015.07.004

    Article  Google Scholar 

  130. Remington B, Broekman HCH, Blom WM, Capt A, Crevel RWR, Dimitrov I, Faeste CK, Fernandez-Canton R, Giavi S, Houben GF, Glenn KC, Madsen CB, Kruizinga AK, Constable A (2018) Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food Chem Toxicol 112:97–107. https://doi.org/10.1016/j.fct.2017.12.025

    Article  CAS  PubMed  Google Scholar 

  131. Yuan F, Lv L, Li Z, Mi N, Chen H, Lin H (2017) Effect of transglutaminase-catalyzed glycosylation on the allergenicity and conformational structure of shrimp (Metapenaeus ensis) tropomyosin. Food Chem 219:215–222. https://doi.org/10.1016/j.foodchem.2016.09.139

    Article  CAS  PubMed  Google Scholar 

  132. Ayuso R, Lehrer SB, Reese G (2002) Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol 127:27–37. https://doi.org/10.1159/000048166

    Article  CAS  PubMed  Google Scholar 

  133. Carnés J, Ferrer Á, Huertas ÁJ, Andreu C, Larramendi CH, Fernández-Caldas E (2007) The use of raw or boiled crustacean extracts for the diagnosis of seafood allergic individuals. Ann Allergy Asthma Immunol 98:349–354. https://doi.org/10.1016/S1081-1206(10)60881-2

    Article  PubMed  Google Scholar 

  134. Sánchez R, Martínez J, Castro A, Pedrosa M, Quirce S, Rodríguez-Pérez R, Gasset M (2016) The amyloid fold of Gad m 1 epitopes governs IgE binding. Sci Rep 6:32801. https://doi.org/10.1038/srep32801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Swoboda I, Bugajska-Schretter A, Verdino P, Keller W, Sperr WR, Valent P, Valenta R, Spitzauer S (2002) Recombinant carp parvalbumin, the major cross-reactive fish allergen: a tool for diagnosis and therapy of fish allergy. J Immunol 168:4576–4584. https://doi.org/10.4049/jimmunol.168.9.4576

    Article  CAS  PubMed  Google Scholar 

  136. Shen H-W, Cao M-J, Cai Q-F, Ruan M-M, Mao H-Y, Su W-J, Liu G-M (2012) Purification, cloning, and immunological characterization of arginine kinase, a novel allergen of Octopus fangsiao. J Agric Food Chem 60:2190–2199. https://doi.org/10.1021/jf203779w

    Article  CAS  PubMed  Google Scholar 

  137. Benedé S, López-Expósito I, Giménez G, Grishina G, Bardina L, Sampson HA, Molina E, López-Fandiño R (2014) In vitro digestibility of bovine β-casein with simulated and human oral and gastrointestinal fluids. Identification and IgE-reactivity of the resultant peptides. Food Chem 143:514–521. https://doi.org/10.1016/j.foodchem.2013.07.110

    Article  CAS  PubMed  Google Scholar 

  138. Stanic D, Monogioudi E, Dilek E, Radosavljevic J, Atanaskovic-Markovic M, Vuckovic O, Raija L, Mattinen M, Buchert J, Cirkovic Velickovic T (2010) Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein. Mol Nutr Food Res 54:1273–1284. https://doi.org/10.1002/mnfr.200900184

    Article  CAS  PubMed  Google Scholar 

  139. Ouahidi I, El Hamsas AEY, Aarab L (2011) Modulation of egg white protein allergenicity under physical and chemical treatments. Food Agric Immunol 22:57–68. https://doi.org/10.1080/09540105.2010.526202

    Article  CAS  Google Scholar 

  140. Martos G, López-Fandiño R, Molina E (2013) Immunoreactivity of hen egg allergens: Influence on in vitro gastrointestinal digestion of the presence of other egg white proteins and of egg yolk. Food Chem 136:775–781. https://doi.org/10.1016/j.foodchem.2012.07.106

    Article  CAS  PubMed  Google Scholar 

  141. Shin M, Han Y, Ahn K (2013) The influence of the time and temperature of heat treatment on the allergenicity of egg white proteins. Allergy Asthma Immunol Res 5:96–101. https://doi.org/10.4168/aair.2013.5.2.96

    Article  CAS  PubMed  Google Scholar 

  142. Mine Y, Zhang JW (2002) Comparative studies on antigenicity and allergenicity of native and denatured egg white proteins. J Agric Food Chem 50:2679–2683. https://doi.org/10.1021/jf0112264

    Article  CAS  PubMed  Google Scholar 

  143. Chen Y, Tu Z, Wang H, Zhang L, Sha X, Pang J, Yang P, Liu G, Yang W (2016) Glycation of β-lactoglobulin under dynamic high pressure microfluidization treatment: Effects on IgE-binding capacity and conformation. Food Res Int 89:882–888. https://doi.org/10.1016/j.foodres.2016.10.020

    Article  CAS  PubMed  Google Scholar 

  144. Meng X, Bai Y, Gao J, Li X, Chen H (2017) Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin. Food Chem 219:290–296. https://doi.org/10.1016/j.foodchem.2016.09.153

    Article  CAS  PubMed  Google Scholar 

  145. Shin M, Lee J, Ahn K, Lee SI, Han Y (2013) The influence of the presence of wheat flour on the antigenic activities of egg white proteins. Allergy Asthma Immunol Res 5:42–47. https://doi.org/10.4168/aair.2013.5.1.42

    Article  CAS  PubMed  Google Scholar 

  146. Lee J-O, Sung D, Park SH, Lee J, Kim J, Shon D-H, Ahn K, Han Y (2017) Effect of acid treatment on allergenicity of peanut and egg. J Sci Food Agric 97:2116–2121. https://doi.org/10.1002/jsfa.8017

    Article  CAS  PubMed  Google Scholar 

  147. Lee J-W, Seo J-H, Kim J-H, Lee S-Y, Byun M-W (2007) Comparison of the changes of the antigenicities of a hen’s egg albumin by a gamma and an electron beam irradiation. Rad Phys Chem 76:879–885. https://doi.org/10.1016/j.radphyschem.2006.06.010

    Article  CAS  Google Scholar 

  148. Martos G, Contreras P, Molina E, López-Fandiño R (2010) Egg white ovalbumin digestion mimicking physiological conditions. J Agric Food Chem 58:5640–5648. https://doi.org/10.1021/jf904538w

    Article  CAS  PubMed  Google Scholar 

  149. Benedé S, López-Expósito I, López-Fandiño R, Molina E (2014) Identification of IgE-binding peptides in hen egg ovalbumin digested in vitro with human and simulated gastroduodenal fluids. J Agric Food Chem 62:152–158. https://doi.org/10.1021/jf404226w

    Article  CAS  PubMed  Google Scholar 

  150. Jiménez-Saiz R, López-Expósito I, Molina E, López-Fandiño R (2013) IgE-binding and in vitro gastrointestinal digestibility of egg allergens in the presence of polysaccharides. Food Hydrocolloids 30:597–605. https://doi.org/10.1016/j.foodhyd.2012.07.014

    Article  CAS  Google Scholar 

  151. Wróblewska B, Kaliszewska A (2012) Cow’s milk proteins immunoreactivity and allergenicity in processed food. Czech J Food Sci 30:211–219. https://doi.org/10.17221/525/2010-CJFS

    Article  Google Scholar 

  152. Mazzucchelli G, Holzhauser T, Velickovic TC, Diaz-Perales A, Molina E, Roncada P, Rodrigues P, Verhoeckx K, Hoffmann-Sommergruber K (2018) Current (food) allergenic risk assessment: Is it fit for novel foods? Status quo and identification of gaps. Mol Nutri Food Res 62:1700278. https://doi.org/10.1002/mnfr.201700278

    Article  CAS  Google Scholar 

  153. Broekman HCH, Eiwegger T, Upton J, Bøgh KL (2015) IgE - the main player of food allergy. Drug Discov Today Dis Models 17–18:37–44. https://doi.org/10.1016/j.ddmod.2016.07.001

    Article  Google Scholar 

  154. Hemmings O, Kwok M, McKendry R, Santos AF (2018) Basophil activation test: old and new applications in allergy. CurrAllergy Asthma Rep 18:77. https://doi.org/10.1007/s11882-018-0831-5

    Article  Google Scholar 

  155. Santos AF, Brough HA (2017) Making the most of in vitro tests to diagnose food allergy. J Allergy Clin Immunol Pract 5:237–248. https://doi.org/10.1016/j.jaip.2016.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  156. Falcone FH, Alcocer MJC, Okamoto-Uchida Y, Nakamura R (2015) Use of humanized rat basophilic leukemia reporter cell lines as a diagnostic tool for detection of allergen-specific IgE in allergic patients: time for a reappraisal? Curr Allergy Asthma Rep 15:67. https://doi.org/10.1007/s11882-015-0568-3

    Article  CAS  PubMed  Google Scholar 

  157. Zhang Z, Xiao H, Zhang X, Zhou P (2019) Conformation, allergenicity and human cell allergy sensitization of tropomyosin from Exopalaemon modestus: effects of deglycosylation and Maillard reaction. Food Chem 276:520–527. https://doi.org/10.1016/j.foodchem.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  158. Song Y, Li Z, Gao Q, Pavase TR, Lin H (2016) Effect of malonaldehyde cross-linking on the ability of shrimp tropomyosin to elicit the release of inflammatory mediators and cytokines from activated RBL-2H3 cells. J Sci Food Agric 96:4263–4267. https://doi.org/10.1002/jsfa.7637

    Article  CAS  PubMed  Google Scholar 

  159. Gámez C, Zafra MP, Sanz V, Mazzeo C, Ibáñez MD, Sastre J, del Pozo V (2015) Simulated gastrointestinal digestion reduces the allergic reactivity of shrimp extract proteins and tropomyosin. Food Chem 173:475–481. https://doi.org/10.1016/j.foodchem.2014.10.063

    Article  CAS  PubMed  Google Scholar 

  160. Kamath SD, Rahman AMA, Voskamp A, Komoda T, Rolland JM, O’Hehir RE, Lopata AL (2014) Effect of heat processing on antibody reactivity to allergen variants and fragments of black tiger prawn: a comprehensive allergenomic approach. Mol Nutr Food Res 58:1144–1155. https://doi.org/10.1002/mnfr.201300584

    Article  CAS  PubMed  Google Scholar 

  161. Jiménez-Saiz R, Benedé S, Miralles B, López-Expósito I, Molina E, López-Fandiño R (2014) Immunological behavior of in vitro digested egg-white lysozyme. Mol Nutr Food Res 58:614–624. https://doi.org/10.1002/mnfr.201300442

    Article  CAS  PubMed  Google Scholar 

  162. Morisawa Y, Kitamura A, Ujihara T, Zushi N, Kuzume K, Shimanouchi Y, Tamura S, Wakiguchi H, Saito H, Matsumoto K (2009) Effect of heat treatment and enzymatic digestion on the B cell epitopes of cow’s milk proteins. Clin Exp Allergy 39:918–925. https://doi.org/10.1111/j.1365-2222.2009.03203.x

    Article  CAS  PubMed  Google Scholar 

  163. Roth-Walter F, Pacios LF, Gomez-Casado C, Hofstetter G, Roth GA, Singer J, Diaz-Perales A, Jensen-Jarolim E (2014) The major cow milk allergen Bos d 5 manipulates T-helper cells depending on its load with siderophore-bound iron. PLoS ONE 9:e104803. https://doi.org/10.1371/journal.pone.0104803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Stanic-Vucinic D, Stojadinovic M, Atanaskovic-Markovic M, Ognjenovic J, Grönlund H, van Hage M, Lantto R, Sancho AI, Velickovic TC (2012) Structural changes and allergenic properties of β-lactoglobulin upon exposure to high-intensity ultrasound. Mol Nutr Food Res 56:1894–1905. https://doi.org/10.1002/mnfr.201200179

    Article  CAS  PubMed  Google Scholar 

  165. Benedé S, López-Fandiño R, Reche M, Molina E, López-Expósito I (2013) Influence of the carbohydrate moieties on the immunoreactivity and digestibility of the egg allergen ovomucoid. PLoS ONE 8:e80810. https://doi.org/10.1371/journal.pone.0080810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Martos G, Lopez-Exposito I, Bencharitiwong R, Berin MC, Nowak-Węgrzyn A (2011) Mechanisms underlying differential food allergy response to heated egg. J Allergy Clin Immunol 127:990-997.e992. https://doi.org/10.1016/j.jaci.2011.01.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. El Mecherfi KE, Curet S, Lupi R, Larré C, Rouaud O, Choiset Y, Rabesona H, Haertlé T (2019) Combined microwave processing and enzymatic proteolysis of bovine whey proteins: the impact on bovine β-lactoglobulin allergenicity. J Food Sci Technol 56:177–186. https://doi.org/10.1007/s13197-018-3471-9

    Article  CAS  PubMed  Google Scholar 

  168. Huang J, Liu C, Wang Y, Wang C, Xie M, Qian Y, Fu L (2018) Application of in vitro and in vivo models in the study of food allergy. Food Sci Human Wellness 7:235–243. https://doi.org/10.1016/j.fshw.2018.10.002

    Article  Google Scholar 

  169. Cases B, García-Ara C, Boyano M, Pérez-Gordo M, Pedrosa M, Vivanco F, Quirce S, Pastor-Vargas C (2011) Phosphorylation reduces the allergenicity of cow casein in children with selective allergy to goat and sheep milk. J Invest Allergol Clin Immunol 21:398–400. http://www.jiaci.org/issues/vol21issue5/9.pdf

  170. Fiocchi A, Restani P, Riva E (2000) Beef allergy in children. Nutrition 16:454–457. https://doi.org/10.1016/S0899-9007(00)00285-9

    Article  CAS  PubMed  Google Scholar 

  171. Bøgh KL, van Bilsen J, Głogowski R, López-Expósito I, Bouchaud G, Blanchard C, Bodinier M, Smit J, Pieters R, Bastiaan-Net S, de Wit N, Untersmayr E, Adel-Patient K, Knippels L, Epstein MM, Noti M, Nygaard UC, Kimber I, Verhoeckx K, O’Mahony L (2016) Current challenges facing the assessment of the allergenic capacity of food allergens in animal models. Clin Transl Allergy 6:21. https://doi.org/10.1186/s13601-016-0110-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gonipeta B, Kim E, Gangur V (2015) Mouse models of food allergy: How well do they simulate the human disorder? Crit Rev Food Sci Nutr 55:437–452. https://doi.org/10.1080/10408398.2012.657807

    Article  CAS  PubMed  Google Scholar 

  173. Han X-Y, Yang H, Rao S-T, Liu G-Y, Hu M-J, Zeng B-C, Cao M-J, Liu G-M (2018) The Maillard reaction reduced the sensitization of tropomyosin and arginine kinase from Scylla paramamosain, simultaneously. J Agric Food Chem 66:2934–2943. https://doi.org/10.1021/acs.jafc.7b05195

    Article  CAS  PubMed  Google Scholar 

  174. Long F, Yang X, Wang R, Hu X, Chen F (2015) Effects of combined high pressure and thermal treatments on the allergenic potential of shrimp (Litopenaeus vannamei) tropomyosin in a mouse model of allergy. Innov Food Sci Emerg Technol 29:119–124. https://doi.org/10.1016/j.ifset.2015.03.002

    Article  CAS  Google Scholar 

  175. Pablos-Tanarro A, Lozano-Ojalvo D, Martínez-Blanco M, López-Fandiño R, Molina E (2017) Sensitizing and eliciting capacity of egg white proteins in BALB/c mice as affected by processing. J Agric Food Chem 65:4500–4508. https://doi.org/10.1021/acs.jafc.7b00953

    Article  CAS  PubMed  Google Scholar 

  176. Roth-Walter F, Berin MC, Arnaboldi P, Escalante CR, Dahan S, Rauch J, Jensen-Jarolim E, Mayer L (2008) Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer’s patches. Allergy 63:882–890. https://doi.org/10.1111/j.1398-9995.2008.01673.x

    Article  PubMed  Google Scholar 

  177. Tong P, Gao L, Gao J, Li X, Wu Z, Yang A, Chen H (2017) Iron-induced chelation alleviates the potential allergenicity of ovotransferrin in a BALB/c mouse model. Nutr Res 47:81–89. https://doi.org/10.1016/j.nutres.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  178. López-Expósito I, Chicón R, Belloque J, López-Fandiño R, Berin M (2012) In vivo methods for testing allergenicity show that high hydrostatic pressure hydrolysates of β-lactoglobulin are immunologically inert. J Dairy Sci 95:541–548. https://doi.org/10.3168/jds.2011-4646

    Article  CAS  PubMed  Google Scholar 

  179. Claude M, Bouchaud G, Lupi R, Castan L, Tranquet O, Denery-Papini S, Bodinier M, Brossard C (2017) How proteins aggregate can reduce allergenicity: comparison of ovalbumins heated under opposite electrostatic conditions. J Agric Food Chem 65:3693–3701. https://doi.org/10.1021/acs.jafc.7b00676

    Article  CAS  PubMed  Google Scholar 

  180. Claude M, Lupi R, Bouchaud G, Bodinier M, Brossard C, Denery-Papini S (2016) The thermal aggregation of ovalbumin as large particles decreases its allergenicity for egg allergic patients and in a murine model. Food Chem 203:136–144. https://doi.org/10.1016/j.foodchem.2016.02.054

    Article  CAS  PubMed  Google Scholar 

  181. Hacini-Rachinel F, Vissers YM, Doucet-Ladevéze R, Blanchard C, Demont A, Perrot M, Panchaud A, Prioult G, Mercenier A, Nutten S (2014) Low-allergenic hydrolyzed egg induces oral tolerance in mice. Int Arch Allergy Immunol 164:64–73. https://doi.org/10.1159/000363110

    Article  CAS  PubMed  Google Scholar 

  182. Tong P, Chen S, Gao J, Li X, Wu Z, Yang A, Yuan J, Chen H (2018) Caffeic acid-assisted cross-linking catalyzed by polyphenol oxidase decreases the allergenicity of ovalbumin in a Balb/c mouse model. Food Chem Toxicol 111:275–283. https://doi.org/10.1016/j.fct.2017.11.026

    Article  CAS  PubMed  Google Scholar 

  183. Golias J, Schwarzer M, Wallner M, Kverka M, Kozakova H, Srutkova D, Klimesova K, Sotkovsky P, Palova-Jelinkova L, Ferreira F, Tuckova L (2012) Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS ONE 7:e37156. https://doi.org/10.1371/journal.pone.0037156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Meng X, Li X, Gao J, Chen H (2016) Characterization of the potential allergenicity of irradiated bovine α-lactalbumin in a BALB/c mouse model. Food Chem Toxicol 97:402–410. https://doi.org/10.1016/j.fct.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  185. Heilmann M, Wellner A, Gadermaier G, Ilchmann A, Briza P, Krause M, Nagai R, Burgdorf S, Scheurer S, Vieths S, Henle T, Toda M (2014) Ovalbumin modified with pyrraline, a Maillard reaction product, shows enhanced T-cell Immunogenicity. J Biol Chem 289:7919–7928. https://doi.org/10.1074/jbc.M113.523621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Seo J-H, Kim J-H, Lee J-W, Yoo Y-C, Kim MR, Park K-S, Byun M-W (2007) Ovalbumin modified by gamma irradiation alters its immunological functions and allergic responses. Int Immunopharmacol 7:464–472. https://doi.org/10.1016/j.intimp.2006.11.012

    Article  CAS  PubMed  Google Scholar 

  187. Seo J-H, Lee J-W, Kim J-H, Byun E-B, Lee S-Y, Kang I-J, Byun M-W (2007) Reduction of allergenicity of irradiated ovalbumin in ovalbumin-allergic mice. Rad Phys Chem 76:1855–1857. https://doi.org/10.1016/j.radphyschem.2007.02.094

    Article  CAS  Google Scholar 

  188. Ahmed I, Lin H, Xu L, Li S, Costa J, Mafra I, Chen G, Gao X, Li Z (2020) Immunomodulatory effect of laccase/caffeic acid and transglutaminase in alleviating shrimp tropomyosin (Met e 1) allergenicity. J Agric Food Chem 68:7765–7778. https://doi.org/10.1021/acs.jafc.0c02366

    Article  CAS  PubMed  Google Scholar 

  189. Fei DX, Liu QM, Chen F, Yang Y, Chen ZW, Cao MJ, Liu GM (2016) Assessment of the sensitizing capacity and allergenicity of enzymatic cross-linked arginine kinase, the crab allergen. Mol Nutr Food Res 60:1707–1718. https://doi.org/10.1002/mnfr.201500936

    Article  CAS  PubMed  Google Scholar 

  190. Yang H, Min J, Han X-Y, Li X-Y, Hu J-W, Liu H, Cao M-J, Liu G-M (2018) Reduction of the histamine content and immunoreactivity of parvalbumin in Decapterus maruadsi by a Maillard reaction combined with pressure treatment. Food Funct 9:4897–4905. https://doi.org/10.1039/C8FO01167B

    Article  CAS  PubMed  Google Scholar 

  191. El Mecherfi K-E, Rouaud O, Curet S, Negaoui H, Chobert J-M, Kheroua O, Saidi D, Haertlé T (2015) Peptic hydrolysis of bovine beta-lactoglobulin under microwave treatment reduces its allergenicity in an ex vivo murine allergy model. Int J Food Sci Technol 50:356–364. https://doi.org/10.1111/ijfs.12653

    Article  CAS  Google Scholar 

  192. Stojadinovic M, Pieters R, Smit J, Velickovic TC (2014) Cross-linking of β-lactoglobulin enhances allergic sensitization through changes in cellular uptake and processing. Toxicol Sci 140:224–235. https://doi.org/10.1093/toxsci/kfu062

    Article  CAS  PubMed  Google Scholar 

  193. Fuc E, Złotkowska D, Wróblewska B (2019) Milk and meat allergens from Bos taurus β-lactoglobulin, α-casein, and bovine serum albumin: An in-vivo study of the immune response in mice. Nutrients 11:2095. https://doi.org/10.3390/nu11092095

    Article  CAS  PubMed Central  Google Scholar 

  194. Benhatchi S, Addou S, Grar H, Benaissa Y, Kheroua O, Saidi D (2019) Induction of sublingual immunotherapy to cow’s milk (raw, pasteurized and sterilized) in Balb/c mice sensitized to beta-lactoglobulin. Revue Française d’Allergologie 59:9–14. https://doi.org/10.1016/j.reval.2018.09.008

    Article  Google Scholar 

  195. Verhoeckx KCM, Vissers YM, Baumert JL, Faludi R, Feys M, Flanagan S, Herouet-Guicheney C, Holzhauser T, Shimojo R, van der Bolt N, Wichers H, Kimber I (2015) Food processing and allergenicity. Food Chem Toxicol 80:223–240. https://doi.org/10.1016/j.fct.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  196. Lee P-W, Nordlee JA, Koppelman SJ, Baumert JL, Taylor SL (2012) Measuring parvalbumin levels in fish muscle tissue: Relevance of muscle locations and storage conditions. Food Chem 135:502–507. https://doi.org/10.1016/j.foodchem.2012.05.030

    Article  CAS  PubMed  Google Scholar 

  197. Somkuti J, Bublin M, Breiteneder H, Smeller L (2012) Pressure-temperature stability, Ca2+ binding, and pressure-temperature phase diagram of cod parvalbumin: Gad m 1. Biochemistry 51:5903–5911. https://doi.org/10.1021/bi300403h

    Article  CAS  PubMed  Google Scholar 

  198. Kobayashi Y, Yang T, Yu C-T, Ume C, Kubota H, Shimakura K, Shiomi K, Hamada-Sato N (2016) Quantification of major allergen parvalbumin in 22 species of fish by SDS-PAGE. Food Chem 194:345–353. https://doi.org/10.1016/j.foodchem.2015.08.037

    Article  CAS  PubMed  Google Scholar 

  199. Vicente-Serrano J, Caballero M, Rodríguez-Pérez R, Carretero P, Perez R, Blanco J, Juste S, Moneo I (2007) Sensitization to serum albumins in children allergic to cow’s milk and epithelia. Pediatr Allergy Immunol 18:503–507. https://doi.org/10.1111/j.1399-3038.2007.00548.x

    Article  CAS  PubMed  Google Scholar 

  200. Pablos-Tanarro A, Lozano-Ojalvo D, Molina E, López-Fandiño R (2018) Assessment of the allergenic potential of the main egg white proteins in BALB/c mice. J Agric Food Chem 66:2970–2976. https://doi.org/10.1021/acs.jafc.8b00402

    Article  CAS  PubMed  Google Scholar 

  201. Bogahawaththa D, Ashraf R, Chandrapala J, Donkor O, Vasiljevic T (2018) In vitro immunogenicity of various native and thermally processed bovine milk proteins and their mixtures. J Dairy Sci 101:8726–8736. https://doi.org/10.3168/jds.2018-14488

    Article  CAS  PubMed  Google Scholar 

  202. Järvinen KM, Chatchatee P (2009) Mammalian milk allergy: clinical suspicion, cross-reactivities and diagnosis. Curr Opin Allergy Clin Immunol 9:251–258. https://doi.org/10.1097/ACI.0b013e32832b3f33

    Article  CAS  PubMed  Google Scholar 

  203. Bernhisel-Broadbent J, Dintzis HM, Dintzis RZ, Sampson HA (1994) Allergenicity and antigenicity of chicken egg ovomucoid (Gal d III) compared with ovalbumin (Gal d I) in children with egg allergy and in mice. J Allergy Clin Immunol 93:1047–1059. https://doi.org/10.1016/S0091-6749(94)70054-0

    Article  CAS  PubMed  Google Scholar 

  204. Heine RG, Laske N, Hill DJ (2006) The diagnosis and management of egg allergy. Curr Allergy Asthma Rep 6:145–152. https://doi.org/10.1007/s11882-006-0053-0

    Article  CAS  PubMed  Google Scholar 

  205. Farrell HM, Qi PX, Uversky VN (2006) New views of protein structure: Applications to the caseins: Protein structure and functionality. In: Fishman ML, Qi PX, Wicker L (eds) Advances in Biopolymers, vol 935. ACS Symposium Series, vol 935. American Chemical Society, Washington DC, pp 52–70. https://doi.org/10.1021/bk-2006-0935.ch004

  206. McMahon DJ, Oommen BS (2013) Casein micelle structure, functions, and interactions. In: McSweeney PLH, Fox PF (eds) Advanced dairy chemistry. Proteins: basic aspects, 4th Edition, vol 1A. Springer US, Boston, MA, pp 185–209. https://doi.org/10.1007/978-1-4614-4714-6_6

  207. Farrell HM, Brown EM, L. ME (2013) Higher order structures of the caseins: a paradox? . In: McSweeney PLH, Fox PF (eds) Advanced dairy chemistry. Proteins: basic aspects, 4th Edition, vol 1A. Springer US, Boston, MA, pp 161–184. https://doi.org/10.1007/978-1-4614-4714-6_5

  208. Tomura S, Ishizaki S, Nagashima Y, Shiomi K (2008) Reduction in the IgE reactivity of Pacific mackerel parvalbumin by mutations at Ca2+-binding sites. Fish Sci 74:411–417. https://doi.org/10.1111/j.1444-2906.2008.01538.x

    Article  CAS  Google Scholar 

  209. Mao HY, Cao MJ, Maleki SJ, Cai QF, Su WJ, Yang Y, Liu GM (2013) Structural characterization and IgE epitope analysis of arginine kinase from Scylla paramamosain. Mol Immunol 56:463–470. https://doi.org/10.1016/j.molimm.2013.04.016

    Article  CAS  PubMed  Google Scholar 

  210. Yang Y, Cao M-J, Alcocer M, Liu Q-M, Fei D-X, Mao H-Y, Liu G-M (2015) Mapping and characterization of antigenic epitopes of arginine kinase of Scylla paramamosain. Mol Immunol 65:310–320. https://doi.org/10.1016/j.molimm.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  211. Stănciuc N, Banu I, Turturică M, Aprodu I (2016) pH and heat induced structural changes of chicken ovalbumin in relation with antigenic properties. Int J Biol Macromol 93:572–581. https://doi.org/10.1016/j.ijbiomac.2016.09.025

    Article  CAS  PubMed  Google Scholar 

  212. Reese G, Ayuso R, Carle T, Lehrer SB (1999) IgE–binding epitopes of shrimp tropomyosin, the major allergen Pen a 1. Int Arch Allergy Immunol 118:300–301. https://doi.org/10.1159/000024108

    Article  CAS  PubMed  Google Scholar 

  213. Mine Y, Wei Zhang J (2002) Identification and fine mapping of IgG and IgE epitopes in ovomucoid. Biochem Biophys Res Comm 292:1070–1074. https://doi.org/10.1006/bbrc.2002.6725

    Article  CAS  PubMed  Google Scholar 

  214. Restani P, Fiocchi A, Beretta B, Velonà T, Giovannini M, Galli CL (1998) Effects of structure modifications on IgE binding properties of serum albumins. Int Arch Allergy Immunol 117:113–119. https://doi.org/10.1159/000023997

    Article  CAS  PubMed  Google Scholar 

  215. Benedé S, López-Expósito I, Molina E, López-Fandiño R (2015) Egg proteins as allergens and the effects of the food matrix and processing. Food Funct 6:694–713. https://doi.org/10.1039/C4FO01104J

    Article  CAS  PubMed  Google Scholar 

  216. Tong P, Gao J, Chen H, Li X, Zhang Y, Jian S, Wichers H, Wu Z, Yang A, Liu F (2012) Effect of heat treatment on the potential allergenicity and conformational structure of egg allergen ovotransferrin. Food Chem 131:603–610. https://doi.org/10.1016/j.foodchem.2011.08.084

    Article  CAS  Google Scholar 

  217. Schwarcz WD, Carnelocce L, Silva JL, Oliveira AC, Gonçalves RB (2008) Conformational changes in bovine lactoferrin induced by slow or fast temperature increases. Biol Chem 389:1137–1142. https://doi.org/10.1515/BC.2008.116

    Article  CAS  PubMed  Google Scholar 

  218. Audagnotto M, Dal Peraro M (2017) Protein post-translational modifications: In silico prediction tools and molecular modeling. Comp Struct Biotechnol J 15:307–319. https://doi.org/10.1016/j.csbj.2017.03.004

    Article  CAS  Google Scholar 

  219. Knorre DG, Kudryashova NV, Godovikova TS (2009) Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae 1:29–51. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347534/

  220. Ruan WW, Cao MJ, Chen F, Cai QF, Su WJ, Wang YZ, Liu GM (2013) Tropomyosin contains IgE-binding epitopes sensitive to periodate but not to enzymatic deglycosylation. J Food Sci 78:C1116–C1121. https://doi.org/10.1111/1750-3841.12169

    Article  CAS  PubMed  Google Scholar 

  221. Besler M, Steinhart H, Paschke A (1997) Allergenicity of hen’s egg-white proteins: IgE binding of native and deglycosylated ovomucoid. Food Agric Immunol 9:277–288. https://doi.org/10.1080/09540109709354958

    Article  CAS  Google Scholar 

  222. Boutrou R, Jardin J, Blais A, Tomé D, Léonil J (2008) Glycosylations of κ-casein-derived caseinomacropeptide reduce its accessibility to endo- but not exointestinal brush border membrane peptidases. J Agric Food Chem 56:8166–8173. https://doi.org/10.1021/jf801140d

    Article  CAS  PubMed  Google Scholar 

  223. Chen H-L, Mao H-Y, Cao M-J, Cai Q-F, Su W-J, Zhang Y-X, Liu G-M (2013) Purification, physicochemical and immunological characterization of arginine kinase, an allergen of crayfish (Procambarus clarkii). Food ChemToxicol 62:475–484. https://doi.org/10.1016/j.fct.2013.09.014

    Article  CAS  Google Scholar 

  224. Bernard H, Meisel H, Creminon C, Wal JM (2000) Post-translational phosphorylation affects the IgE binding capacity of caseins. FEBS Lett 467:239–244. https://doi.org/10.1016/S0014-5793(00)01164-9

    Article  CAS  PubMed  Google Scholar 

  225. Bernard H, Negroni L, Chatel JM, Clement G, Adel-Patient K, Peltre G, Creminon C, Wal JM (2000) Molecular basis of IgE cross-reactivity between human β-casein and bovine β-casein, a major allergen of milk. Mol Immunol 37:161–167. https://doi.org/10.1016/S0161-5890(00)00029-8

    Article  CAS  PubMed  Google Scholar 

  226. Permyakov SE, Vologzhannikova AA, Emelyanenko VI, Knyazeva EL, Kazakov AS, Lapteva YS, Permyakova ME, Zhadan AP, Permyakov EA (2012) The impact of alpha-N-acetylation on structural and functional status of parvalbumin. Cell Calcium 52:366–376. https://doi.org/10.1016/j.ceca.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  227. Bugajska-Schretter A, Elfman L, Fuchs T, Kaplotis S, Rumpold H, Valenta R, Spitzauer S (1998) Parvalbumin, a cross-reactive fish allergen, contains IgE-binding epitopes sensitive to periodate treatment and Ca2+ depletion. J Allergy Clin Immunol 101:67–74. https://doi.org/10.1016/S0091-6749(98)70195-2

    Article  CAS  PubMed  Google Scholar 

  228. Holt C, Carver JA, Ecroyd H, Thorn DC (2013) Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods1. J Dairy Sci 96:6127–6146. https://doi.org/10.3168/jds.2013-6831

    Article  CAS  PubMed  Google Scholar 

  229. Zhu Y, Vanga SK, Wang J, Raghavan V (2018) Impact of food processing on the structural and allergenic properties of egg white. Trends Food Sci Technol 78:188–196. https://doi.org/10.1016/j.tifs.2018.06.005

    Article  CAS  Google Scholar 

  230. Hufnagl K, Ghosh D, Wagner S, Fiocchi A, Dahdah L, Bianchini R, Braun N, Steinborn R, Hofer M, Blaschitz M, Roth GA, Hofstetter G, Roth-Walter F, Pacios LF, Jensen-Jarolim E (2018) Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope. Sci Rep 8:1598. https://doi.org/10.1038/s41598-018-19883-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Liu J, Ru Q, Ding Y (2012) Glycation a promising method for food protein modification: physicochemical properties and structure, a review. Food Res Int 49:170–183. https://doi.org/10.1016/j.foodres.2012.07.034

    Article  CAS  Google Scholar 

  232. Rao Q, Jiang X, Li Y, Samiwala M, Labuza TP (2018) Can glycation reduce food allergenicity? J Agric Food Chem 66:4295–4299. https://doi.org/10.1021/acs.jafc.8b00660

    Article  CAS  PubMed  Google Scholar 

  233. Teodorowicz M, van Neerven J, Savelkoul H (2017) Food processing: The influence of the maillard reaction on immunogenicity and allergenicity of food proteins. Nutrients 9:835. https://doi.org/10.3390/nu9080835

    Article  CAS  PubMed Central  Google Scholar 

  234. Nakamura A, Sasaki F, Watanabe K, Ojima T, Ahn D-H, Saeki H (2006) Changes in allergenicity and digestibility of squid tropomyosin during the Maillard reaction with ribose. J Agric Food Chem 54:9529–9534. https://doi.org/10.1021/jf061070d

    Article  CAS  PubMed  Google Scholar 

  235. Nakamura A, Watanabe K, Ojima T, Ahn D-H, Saeki H (2005) Effect of Maillard reaction on allergenicity of scallop tropomyosin. J Agric Food Chem 53:7559–7564. https://doi.org/10.1021/jf0502045

    Article  CAS  PubMed  Google Scholar 

  236. Fu L, Wang C, Wang J, Ni S, Wang Y (2019) Maillard reaction with ribose, galacto-oligosaccharide or chitosan-oligosaccharide reduced the allergenicity of shrimp tropomyosin by inducing conformational changes. Food Chem 274:789–795. https://doi.org/10.1016/j.foodchem.2018.09.068

    Article  CAS  PubMed  Google Scholar 

  237. Fang L, Li G, Gu R, Cai M, Lu J (2018) Influence of thermal treatment on the characteristics of major oyster allergen Cra g 1 (tropomyosin). J Sci Food Agric 98:5322–5328. https://doi.org/10.1002/jsfa.9071

    Article  CAS  PubMed  Google Scholar 

  238. de Jongh HHJ, Robles CL, Timmerman E, Nordlee JA, Lee P-W, Baumert JL, Hamilton RG, Taylor SL, Koppelman SJ (2013) Digestibility and IgE-binding of glycosylated codfish parvalbumin. BioMed Res Int 2013:756789. https://doi.org/10.1155/2013/756789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Li Z, Jiang M, You J, Luo Y, Feng L (2014) Impact of Maillard reaction conditions on the antigenicity of parvalbumin, the major allergen in grass carp. Food Agric Immunol 25:486–497. https://doi.org/10.1080/09540105.2013.838943

    Article  CAS  Google Scholar 

  240. Zhao Y-J, Cai Q-F, Jin T-c, Zhang L-J, Fei D-X, Liu G-M, Cao M-J (2017) Effect of Maillard reaction on the structural and immunological properties of recombinant silver carp parvalbumin. LWT-Food Sci Technol 75:25–33. https://doi.org/10.1016/j.lwt.2016.08.049

    Article  CAS  Google Scholar 

  241. Pinto MS, Léonil J, Henry G, Cauty C, Carvalho AF, Bouhallab S (2014) Heating and glycation of β-lactoglobulin and β-casein: aggregation and in vitro digestion. Food Res Int 55:70–76. https://doi.org/10.1016/j.foodres.2013.10.030

    Article  CAS  Google Scholar 

  242. Zhao D, Li L, Le TT, Larsen LB, Su G, Liang Y, Li B (2017) Digestibility of glyoxal-glycated β-casein and β-lactoglobulin and distribution of peptide-bound advanced glycation end products in gastrointestinal digests. J Agric Food Chem 65:5778–5788. https://doi.org/10.1021/acs.jafc.7b01951

    Article  CAS  PubMed  Google Scholar 

  243. Enomoto H, Li C-P, Morizane K, Ibrahim HR, Sugimoto Y, Ohki S, Ohtomo H, Aoki T (2007) Glycation and phosphorylation of β-lactoglobulin by dry-heating: effect on protein structure and some properties. J Agric Food Chem 55:2392–2398. https://doi.org/10.1021/jf062830n

    Article  CAS  PubMed  Google Scholar 

  244. Liu F, Teodorowicz M, van Boekel MAJS, Wichers HJ, Hettinga KA (2016) The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands. Food Funct 7:239–249. https://doi.org/10.1039/C5FO00718F

    Article  CAS  PubMed  Google Scholar 

  245. Taheri-Kafrani A, Gaudin J-C, Rabesona H, Nioi C, Agarwal D, Drouet M, Chobert J-M, Bordbar A-K, Haertle T (2009) Effects of heating and glycation of β-lactoglobulin on its recognition by IgE of sera from cow milk allergy patients. J Agric Food Chem 57:4974–4982. https://doi.org/10.1021/jf804038t

    Article  CAS  PubMed  Google Scholar 

  246. Perusko M, van Roest M, Stanic-Vucinic D, Simons PJ, Pieters RHH, Cirkovic Velickovic T, Smit JJ (2018) Glycation of the major milk allergen β-lactoglobulin changes its allergenicity by alterations in cellular uptake and degradation. Mol Nutr Food Res 62:1800341. https://doi.org/10.1002/mnfr.201800341

    Article  CAS  PubMed Central  Google Scholar 

  247. Yang W, Tu Z, Wang H, Zhang L, Kaltashov IA, Zhao Y, Niu C, Yao H, Ye W (2018) The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS. Food Funct 9:417–425. https://doi.org/10.1039/C7FO01082F

    Article  CAS  PubMed  Google Scholar 

  248. Yang W, Tu Z, Wang H, Zhang L, Xu S, Niu C, Yao H, Kaltashov IA (2017) Mechanism of reduction in IgG and IgE binding of β-lactoglobulin induced by ultrasound pretreatment combined with dry-state glycation: a study using conventional spectrometry and high-resolution mass spectrometry. J Agric Food Chem 65:8018–8027. https://doi.org/10.1021/acs.jafc.7b02842

    Article  CAS  PubMed  Google Scholar 

  249. Corzo-Martínez M, Soria AC, Belloque J, Villamiel M, Moreno FJ (2010) Effect of glycation on the gastrointestinal digestibility and immunoreactivity of bovine β-lactoglobulin. Int Dairy J 20:742–752. https://doi.org/10.1016/j.idairyj.2010.04.002

    Article  CAS  Google Scholar 

  250. Bu G, Luo Y, Zheng Z, Zheng H (2009) Effect of heat treatment on the antigenicity of bovine α-lactalbumin and β-lactoglobulin in whey protein isolate. Food Agric Immunol 20:195–206. https://doi.org/10.1080/09540100903026116

    Article  CAS  Google Scholar 

  251. Ma X, Gao J, Tong P, Yang H, Zu Q, Meng X, Lu J, Chen H (2015) Effects of Maillard reaction conditions on in vitro immunoglobulin G binding capacity of ovalbumin using response surface methodology. Food Agric Immunol 26:835–847. https://doi.org/10.1080/09540105.2015.1039496

    Article  CAS  Google Scholar 

  252. Jiménez-Saiz R, Belloque J, Molina E, López-Fandiño R (2011) Human immunoglobulin E (IgE) binding to heated and glycated ovalbumin and ovomucoid before and after in vitro digestion. J Agric Food Chem 59:10044–10051. https://doi.org/10.1021/jf2014638

    Article  CAS  PubMed  Google Scholar 

  253. Ma XJ, Chen HB, Gao JY, Hu CQ, Li X (2013) Conformation affects the potential allergenicity of ovalbumin after heating and glycation. Food Addit Cont Part A 30:1684–1692. https://doi.org/10.1080/19440049.2013.822105

    Article  CAS  Google Scholar 

  254. Ma X-j, Gao J-y, Chen H-b (2013) Combined effect of glycation and sodium carbonate-bicarbonate buffer concentration on IgG binding, IgE binding and conformation of ovalbumin. J Sci Food Agric 93:3209–3215. https://doi.org/10.1002/jsfa.6157

    Article  CAS  PubMed  Google Scholar 

  255. Yang W, Tu Z, Wang H, Zhang L, Song Q (2018) Glycation of ovalbumin after high-intensity ultrasound pretreatment: effects on conformation, immunoglobulin (Ig)G/IgE binding ability and antioxidant activity. J Sci Food Agric 98:3767–3773. https://doi.org/10.1002/jsfa.8890

    Article  CAS  PubMed  Google Scholar 

  256. Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, Saloga J (2010) Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology 129:437–445. https://doi.org/10.1111/j.1365-2567.2009.03199.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Ilchmann A, Burgdorf S, Scheurer S, Waibler Z, Nagai R, Wellner A, Yamamoto Y, Yamamoto H, Henle T, Kurts C, Kalinke U, Vieths S, Toda M (2010) Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II. J Allergy Clin Immunol 125:175-183.e111. https://doi.org/10.1016/j.jaci.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  258. Enomoto H, Hayashi Y, Li CP, Ohki S, Ohtomo H, Shiokawa M, Aoki T (2009) Glycation and phosphorylation of α-lactalbumin by dry heating: Effect on protein structure and physiological functions. J Dairy Sci 92:3057–3068. https://doi.org/10.3168/jds.2009-2014

    Article  CAS  PubMed  Google Scholar 

  259. Kleber N, Krause I, Illgner S, Hinrichs J (2004) The antigenic response of β-lactoglobulin is modulated by thermally induced aggregation. Eur Food Res Technol 219:105–110. https://doi.org/10.1007/s00217-004-0924-3

    Article  CAS  Google Scholar 

  260. Docena GH, Fernandez R, Chirdo FG, Fossati CA (1996) Identification of casein as the major allergenic and antigenic protein of cow’s milk. Allergy 51:412–416. https://doi.org/10.1111/j.1398-9995.1996.tb04639.x

    Article  CAS  PubMed  Google Scholar 

  261. Bloom KA, Huang FR, Bencharitiwong R, Bardina L, Ross A, Sampson HA, Nowak-Węgrzyn A (2014) Effect of heat treatment on milk and egg proteins allergenicity. Pediatr Allergy Immunol 25:740–746. https://doi.org/10.1111/pai.12283

    Article  PubMed  Google Scholar 

  262. Dupont D, Boutrou R, Menard O, Jardin J, Tanguy G, Schuck P, Haab BB, Leonil J (2010) Heat treatment of milk during powder manufacture increases casein resistance to simulated infant digestion. Food Dig 1:28–39. https://doi.org/10.1007/s13228-010-0003-0

    Article  CAS  Google Scholar 

  263. Dupont D, Mandalari G, Mollé D, Jardin J, Rolet-Répécaud O, Duboz G, Léonil J, Mills CEN, Mackie AR (2010) Food processing increases casein resistance to simulated infant digestion. Mol Nutr Food Res 54:1677–1689. https://doi.org/10.1002/mnfr.200900582

    Article  CAS  PubMed  Google Scholar 

  264. Kato Y, Oozawa E, Matsuda T (2001) Decrease in antigenic and allergenic potentials of ovomucoid by heating in the presence of wheat flour: dependence on wheat variety and intermolecular disulfide bridges. J Agric Food Chem 49:3661–3665. https://doi.org/10.1021/jf0102766

    Article  CAS  PubMed  Google Scholar 

  265. Kim K-B-W-R, Lee SY, Song EJ, Park JG, Lee JW, Byun MW, Kim KE, Ahn DH (2010) Changes in allergenicity of porcine serum albumin by gamma irradiation. Korean J Food Sci Anim Resour 30:397–402. https://doi.org/10.5851/kosfa.2010.30.3.397

    Article  Google Scholar 

  266. Usui M, Harada A, Ishimaru T, Sakumichi E, Saratani F, Sato-Minami C, Azakami H, Miyasaki T, Ki H (2013) Contribution of structural reversibility to the heat stability of the tropomyosin shrimp allergen. Biosci Biotechnol Biochem 77:948–953. https://doi.org/10.1271/bbb.120887

    Article  CAS  PubMed  Google Scholar 

  267. Faisal M, Vasiljevic T, Donkor ON (2019) Effects of selected processing treatments on antigenicity of banana prawn (Fenneropenaeus merguiensis) tropomyosin. Int J Food Sci Technol 54:183–193. https://doi.org/10.1111/ijfs.13922

    Article  CAS  Google Scholar 

  268. Rolland JM, Varese NP, Abramovitch JB, Anania J, Nugraha R, Kamath S, Hazard A, Lopata AL, O’Hehir RE (2018) Effect of heat processing on IgE reactivity and cross-reactivity of tropomyosin and other allergens of Asia-Pacific mollusc species: identification of novel sydney rock oyster tropomyosin Sac g 1. Mol Nutr Food Res 62:1800148. https://doi.org/10.1002/mnfr.201800148

    Article  CAS  PubMed Central  Google Scholar 

  269. Bernhisel-Broadbent J, Scanlon SM, Sampson HA (1992) Fish hypersensitivity. I. In vitro and oral challenge results in fish- allergic patients. J Allergy Clin Immunol 89:730–737. https://doi.org/10.1016/0091-6749(92)90381-B

    Article  CAS  PubMed  Google Scholar 

  270. Lamberti C, Baro C, Giribaldi M, Napolitano L, Cavallarin L, Giuffrida MG (2018) Effects of two different domestic boiling practices on the allergenicity of cow’s milk proteins. J Sci Food Agric 98:2370–2377. https://doi.org/10.1002/jsfa.8728

    Article  CAS  PubMed  Google Scholar 

  271. Xu Q, Shi J, Yao M, Jiang M, Luo Y (2016) Effects of heat treatment on the antigenicity of four milk proteins in milk protein concentrates. Food Agric Immunol 27:401–413. https://doi.org/10.1080/09540105.2015.1117059

    Article  CAS  Google Scholar 

  272. Lee J-W, Lee K-Y, Yook H-S, Lee S-Y, Kim H-Y, Jo C, Byun M-W (2002) Allergenicity of hen’s egg ovomucoid gamma irradiated and heated under different pH conditions. J Food Prot 65:1196–1199. https://doi.org/10.4315/0362-028X-65.7.1196

    Article  CAS  PubMed  Google Scholar 

  273. Carrasco PR, Klug C, Swoboda I, Augustin G, Quirce S, Hemmer W (2016) Serum albumin, an important allergen also in processed pork meat products. Allergy 71:627–627. https://doi.org/10.1111/all.12979

    Article  Google Scholar 

  274. Restani P, Ballabio C, Cattaneo A, Isoardi P, Terracciano L, Fiocchi A (2004) Characterization of bovine serum albumin epitopes and their role in allergic reactions. Allergy 59:21–24. https://doi.org/10.1111/j.1398-9995.2004.00568.x

    Article  CAS  PubMed  Google Scholar 

  275. Quirce S, Marañón F, Umpiérrez A, de laas Heras M, Jiménez A, Fernández-Caldas E, Sastre J (2000) Identification of chicken serum albumin as a thermolabile egg allergen (Gal d 5) responsible for the bird-egg syndrome. J Allergy Clin Immunol 105:S136–S137. https://doi.org/10.1016/S0091-6749(00)90841-8

    Article  Google Scholar 

  276. Kim M-J, Lee J-W, Yook H-S, Lee S-Y, Kim M-C, Byun M-W (2002) Changes in the antigenic and immunoglobulin E–binding properties of hen’s egg albumin with the combination of heat and gamma irradiation treatment. J Food Prot 65:1192–1195. https://doi.org/10.4315/0362-028X-65.7.1192

    Article  CAS  PubMed  Google Scholar 

  277. Azdad O, Mejrhit N, Aarab L (2018) Reduction of the allergenicity of cow’s milk alpha-lactalbumin under heat-treatment and enzymatic hydrolysis in Moroccan population. Eur Ann Allergy Clin Immunol 50:177–183. https://doi.org/10.23822/EurAnnACI.1764-1489.60

    Article  CAS  PubMed  Google Scholar 

  278. Liu M, Liu G-Y, Yang Y, Mei X-J, Yang H, Li Y, Cao M-J, Liu G-M (2018) Thermal processing influences the digestibility and immunoreactivity of muscle proteins of Scylla paramamosain. LWT-Food Sci Technol 98:559–567. https://doi.org/10.1016/j.lwt.2018.09.027

    Article  CAS  Google Scholar 

  279. Hu G, Zheng Y, Liu Z, Deng Y, Zhao Y (2016) Structure and IgE-binding properties of α-casein treated by high hydrostatic pressure, UV-C, and far-IR radiations. Food Chem 204:46–55. https://doi.org/10.1016/j.foodchem.2016.02.113

    Article  CAS  PubMed  Google Scholar 

  280. Bogahawaththa D, Buckow R, Chandrapala J, Vasiljevic T (2018) Comparison between thermal pasteurization and high pressure processing of bovine skim milk in relation to denaturation and immunogenicity of native milk proteins. Innov Food Sci Emerg Technol 47:301–308. https://doi.org/10.1016/j.ifset.2018.03.016

    Article  CAS  Google Scholar 

  281. Boughellout H, Choiset Y, Rabesona H, Chobert JM, Haertle T, Mounir S, Allaf K, Zidoune MN (2015) Effect of instant controlled pressure drop (DIC) treatment on milk protein’s immunoreactivity. Food Agric Immunol 26:71–81. https://doi.org/10.1080/09540105.2013.864607

    Article  Google Scholar 

  282. Kim K, Kim SJ, Lee SY, Song EJ, Ahn DH (2008) Changes in allergenicity of porcine serum albumin by microwave, sonication, and high hydrostatic pressure. Korean J Food Sci Anim Resour 28:499–504. https://doi.org/10.5851/kosfa.2008.28.4.499

    Article  Google Scholar 

  283. Kurpiewska K, Biela A, Loch JI, Lipowska J, Siuda M, Lewiński K (2019) Towards understanding the effect of high pressure on food protein allergenicity: β-lactoglobulin structural studies. Food Chem 270:315–321. https://doi.org/10.1016/j.foodchem.2018.07.104

    Article  CAS  PubMed  Google Scholar 

  284. Kleber N, Maier S, Hinrichs J (2007) Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment and temperature. Innov Food Sci Emerg Technol 8:39–45. https://doi.org/10.1016/j.ifset.2006.05.001

    Article  CAS  Google Scholar 

  285. Vanga SK, Singh A, Raghavan V (2017) Review of conventional and novel food processing methods on food allergens. Crit Rev Food Sci Nutri 57:2077–2094. https://doi.org/10.1080/10408398.2015.1045965

    Article  CAS  Google Scholar 

  286. Barbosa-Cánovas GV, Altunakar B (2006) Pulsed electric fields processing of foods: An overview. In: Raso J, Heinz V (eds) Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications. Springer, US, Boston, MA, pp 3–26. https://doi.org/10.1007/978-0-387-31122-7_1

    Chapter  Google Scholar 

  287. Ekezie F-GC, Cheng J-H, Sun D-W (2018) Effects of nonthermal food processing technologies on food allergens: a review of recent research advances. Trend Food Sci Technol 74:12–25. https://doi.org/10.1016/j.tifs.2018.01.007

    Article  CAS  Google Scholar 

  288. Shriver S, Yang W, Chung S-Y, Percival S (2011) Pulsed ultraviolet light reduces immunoglobulin E binding to Atlantic white shrimp (Litopenaeus setiferus) extract. Int J Environ Res Public Health 8:2569–2583. https://doi.org/10.3390/ijerph8072569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Yang WW, Shriver SK, Chung S-y, Percival S, Correll MJ, Rababah TM (2012) In vitro gastric and intestinal digestions of pulsed light-treated shrimp extracts. Appl Biochem Biotechnol 166:1409–1422. https://doi.org/10.1007/s12010-011-9534-2

    Article  CAS  PubMed  Google Scholar 

  290. Tammineedi CVRK, Choudhary R, Perez-Alvarado GC, Watson DG (2013) Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. LWT - Food Sci Technol 54:35–41. https://doi.org/10.1016/j.lwt.2013.05.020

    Article  CAS  Google Scholar 

  291. Ham J, Jeong S, Lee S, Han G, Chae H, Yoo Y, Kim D, Lee W, Jo C (2009) Irradiation effect on α-and β-caseins of milk and Queso Blanco cheese determined by capillary electrophoresis. Rad Phys Chem 78:158–163. https://doi.org/10.1016/j.radphyschem.2008.09.008

    Article  CAS  Google Scholar 

  292. Meng X, Li X, Wang X, Gao J, Yang H, Chen H (2016) Potential allergenicity response to structural modification of irradiated bovine α-lactalbumin. Food Funct 7:3102–3110. https://doi.org/10.1039/C6FO00400H

    Article  CAS  PubMed  Google Scholar 

  293. Byun M-W, Lee J-W, Yook H-S, Jo C, Kim H-Y (2002) Application of gamma irradiation for inhibition of food allergy. Rad Phys Chem 63:369–370. https://doi.org/10.1016/S0969-806X(01)00528-X

    Article  CAS  Google Scholar 

  294. Lee J-W, Kim J-H, Yook H-S, Kang K-O, Lee S-Y, Hwang H-J, Byun M-W (2001) Effects of gamma radiation on the allergenic and antigenic properties of milk proteins. J Food Prot 64:272–276. https://doi.org/10.4315/0362-028X-64.2.272

    Article  CAS  PubMed  Google Scholar 

  295. Zhu X, Wang W, Shen J, Xu X, Zhou G (2019) Influence of gamma irradiation on porcine serum albumin structural properties and allergenicity. J AOAC Int 101:529–535. https://doi.org/10.5740/jaoacint.17-0160

    Article  CAS  Google Scholar 

  296. Liu Y, Li Z, Pavase T, Li Z, Liu Y, Wang N (2017) Evaluation of electron beam irradiation to reduce the IgE binding capacity of frozen shrimp tropomyosin. Food Agric Immunol 28:189–201. https://doi.org/10.1080/09540105.2016.1251394

    Article  CAS  Google Scholar 

  297. Lee JW, Seo JH, Kim JH, Lee SY, Kim KS, Byun MW (2005) Changes of the antigenic and allergenic properties of a hen’s egg albumin in a cake with gamma-irradiated egg white. Rad Phys Chem 72:645–650. https://doi.org/10.1016/j.radphyschem.2004.03.088

    Article  CAS  Google Scholar 

  298. Yang W, Tu Z, Wang H, Zhang L, Gao Y, Li X, Tian M (2017) Immunogenic and structural properties of ovalbumin treated by pulsed electric fields. Int J Food Prop 20:S3164–S3176. https://doi.org/10.1080/10942912.2017.1396479

    Article  CAS  Google Scholar 

  299. Pereira RN, Costa J, Rodrigues RM, Villa C, Machado L, Mafra I, Vicente AA (2020) Effects of ohmic heating on the immunoreactivity of β-lactoglobulin – a relationship towards structural aspects. Food Funct 11:4002–4013. https://doi.org/10.1039/C9FO02834J

    Article  CAS  PubMed  Google Scholar 

  300. Onwude DI, Hashim N, Janius R, Abdan K, Chen G, Oladejo AO (2017) Non-thermal hybrid drying of fruits and vegetables: a review of current technologies. Innov Food Sci Emerging Technol 43:223–238. https://doi.org/10.1016/j.ifset.2017.08.010

    Article  CAS  Google Scholar 

  301. Mañas P, Muñoz B, Sanz D, Condón S (2006) Inactivation of lysozyme by ultrasonic waves under pressure at different temperatures. Enzyme Microb Technol 39:1177–1182. https://doi.org/10.1016/j.enzmictec.2005.11.053

    Article  CAS  Google Scholar 

  302. Kim SJ, Kim K, Song EJ, Lee SY, Yoon SY, Lee SJ, Lee CJ, Park JG, Lee JW, Byun MW, Ahn DH (2009) Changes of pork antigenicity by heat, pressure, sonication, microwave, and gamma irradiation. Korean J Food Sci Anim Resour 29:709–718. https://doi.org/10.5851/kosfa.2009.29.6.709

    Article  Google Scholar 

  303. Park JG, Saeki H, Nakamura A, Kim K, Lee JW, Byun MW, Kim SM, Lim SM, Ahn DH (2007) Allergenicity changes in raw shrimp (Acetes japonicus) and Saeujeot (salted and fermented shrimp) in cabbage Kimchi due to fermentation conditions. Food Sci Biotechnol 16:1011–1017. http://www.koreascience.or.kr/article/JAKO200709905797926.view

  304. Pessato TB, Carvalho NC, Tavano OL, Fernandes LGR, Zollner RL, Netto FM (2016) Whey protein isolate hydrolysates obtained with free and immobilized alcalase: characterization and detection of residual allergens. Food Res Int 83:112–120. https://doi.org/10.1016/j.foodres.2016.02.015

    Article  CAS  Google Scholar 

  305. Zheng H, Shen X, Bu G, Luo Y (2008) Effects of pH, temperature and enzyme-to-substrate ratio on the antigenicity of whey protein hydrolysates prepared by Alcalase. Int Dairy J 18:1028–1033. https://doi.org/10.1016/j.idairyj.2008.05.002

    Article  CAS  Google Scholar 

  306. Wróblewska B, Markiewicz LH, Szyc AM, Dietrich MA, Szymkiewicz A, Fotschki J (2016) Lactobacillus casei LcY decreases milk protein immunoreactivity of fermented buttermilk but also contains IgE-reactive proteins. Food Res Int 83:95–101. https://doi.org/10.1016/j.foodres.2016.02.016

    Article  CAS  Google Scholar 

  307. Sabadin IS, Villas-Boas MB, Zollner RD, Netto FM (2012) Effect of combined treatment of hydrolysis and polymerization with transglutaminase on beta-lactoglobulin antigenicity. Eur Food Res Technol 235:801–809. https://doi.org/10.1007/s00217-012-1802-z

    Article  CAS  Google Scholar 

  308. Ahmadova A, El-Ghaish S, Choiset Y, Rabesona H, Drouet M, Chobert J, Kuliev AA, Haertle T (2013) Modification of IgE binding to β-and αS1-caseins by proteolytic activity of Lactobacillus helveticus A75. J Food Biochem 37:491–500. https://doi.org/10.1111/j.1745-4514.2012.00664.x

    Article  CAS  Google Scholar 

  309. Yao M, Luo Y, Shi J, Zhou Y, Xu Q, Li Z (2014) Effects of fermentation by Lactobacillus rhamnosus GG on the antigenicity and allergenicity of four cows’ milk proteins. Food Agric Immunol 25:545–555. https://doi.org/10.1080/09540105.2013.852163

    Article  CAS  Google Scholar 

  310. Shi J, Luo Y, Xiao Y, Li Z, Xu Q, Yao M (2014) Effects of fermentation by Lactobacillus casei on the antigenicity and allergenicity of four bovine milk proteins. Int Dairy J 35:75–80. https://doi.org/10.1016/j.idairyj.2013.10.010

    Article  CAS  Google Scholar 

  311. Golkar A, Milani JM, Vasiljevic T (2019) Altering allergenicity of cow’s milk by food processing for applications in infant formula. Crit Rev Food Sci Nutr 59:159–172. https://doi.org/10.1080/10408398.2017.1363156

    Article  CAS  PubMed  Google Scholar 

  312. Høst A, Halken S (2004) Hypoallergenic formulas – when, to whom and how long: after more than 15 years we know the right indication! Allergy 59:45–52. https://doi.org/10.1111/j.1398-9995.2004.00574.x

    Article  PubMed  Google Scholar 

  313. Ballmer-Weber BK, Brockow K, Fiocchi A, Theler B, Vogel L, Ring J, Szépfalusi Z, Mazzina O, Schaller R, Fritsché R, Vissers YM, Nutten S (2016) Hydrolysed egg displays strong decrease in allergenicity and is well tolerated by egg-allergic patients. Allergy 71:728–732. https://doi.org/10.1111/all.12852

    Article  CAS  PubMed  Google Scholar 

  314. Lin H, Li Z, Lin H, Song Y, Lv L, Hao Z (2015) Effect of pH shifts on IgE-binding capacity and conformational structure of tropomyosin from short-neck clam (Ruditapes philippinarum). Food Chem 188:248–255. https://doi.org/10.1016/j.foodchem.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  315. Jiménez-Saiz R, Pineda-Vadillo C, López-Fandiño R, Molina E (2012) Human IgE binding and in vitro digestion of S-OVA. Food Chem 135:1842–1847. https://doi.org/10.1016/j.foodchem.2012.06.044

    Article  CAS  PubMed  Google Scholar 

  316. Akkerdaas J, Totis M, Barnett B, Bell E, Davis T, Edrington T, Glenn K, Graser G, Herman R, Knulst A, Ladics G, McClain S, Poulsen LK, Ranjan R, Rascle J-B, Serrano H, Speijer D, Wang R, Pereira Mouriès L, Capt A, van Ree R (2018) Protease resistance of food proteins: a mixed picture for predicting allergenicity but a useful tool for assessing exposure. Clin Transl Allergy 8:30. https://doi.org/10.1186/s13601-018-0216-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Foster ES, Kimber I, Dearman RJ (2013) Relationship between protein digestibility and allergenicity: comparisons of pepsin and cathepsin. Toxicology 309:30–38. https://doi.org/10.1016/j.tox.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  318. Vickery BP, Chin S, Burks AW (2011) Pathophysiology of food allergy. Pediatr Clin N Am 58:363–376. https://doi.org/10.1016/j.pcl.2011.02.012

    Article  Google Scholar 

  319. Perrier C, Corthésy B (2011) Gut permeability and food allergies. Clin Exp Allergy 41:20–28. https://doi.org/10.1111/j.1365-2222.2010.03639.x

    Article  CAS  PubMed  Google Scholar 

  320. Steele L, Mayer L, Cecilia Berin M (2012) Mucosal immunology of tolerance and allergy in the gastrointestinal tract. Immunol Res 54:75–82. https://doi.org/10.1007/s12026-012-8308-4

    Article  CAS  PubMed  Google Scholar 

  321. Yu HL, Ruan WW, Cao MJ, Cai QF, Shen HW, Liu GM (2013) Identification of physicochemical properties of Scylla paramamosain allergen, arginin kinase. J Sci Food Agric 93:245–253. https://doi.org/10.1002/jsfa.5748

    Article  CAS  PubMed  Google Scholar 

  322. Astwood JD, Leach JN, Fuchs RL (1996) Stability of food allergens to digestion in vitro. Nat Biotechnol 14:1269–1273. https://doi.org/10.1038/nbt1096-1269

    Article  CAS  PubMed  Google Scholar 

  323. Martinez J, Sanchez R, Castellanos M, Fernandez-Escamilla AM, Vazquez-Cortes S, Fernandez-Rivas M, Gasset M (2015) Fish beta-parvalbumin acquires allergenic properties by amyloid assembly. Swiss Med Wkly 145:w14128. https://doi.org/10.4414/smw.2015.14128

    Article  PubMed  Google Scholar 

  324. Liu GM, Huang YY, Cai QF, Weng WY, Su WJ, Cao MJ (2011) Comparative study of in vitro digestibility of major allergen, tropomyosin and other proteins between Grass prawn (Penaeus monodon) and Pacific white shrimp (Litopenaeus vannamei). J Sci Food Agric 91:163–170. https://doi.org/10.1002/jsfa.4167

    Article  CAS  PubMed  Google Scholar 

  325. Lv L, Lin H, Li Z, Ahmed I, Chen G (2017) Determining the effect of malondialdehyde on the IgE-binding capacity of shrimp tropomyosin upon in vitro digestion. J Sci Food Agric 97:4588–4594. https://doi.org/10.1002/jsfa.8328

    Article  CAS  PubMed  Google Scholar 

  326. Jiménez-Saiz R, Martos G, Carrillo W, López-Fandiño R, Molina E (2011) Susceptibility of lysozyme to in-vitro digestion and immunoreactivity of its digests. Food Chem 127:1719–1726. https://doi.org/10.1016/j.foodchem.2011.02.047

    Article  CAS  Google Scholar 

  327. Yao M, Xu Q, Luo Y, Shi J, Li Z (2015) Study on reducing antigenic response and IgE-binding inhibitions of four milk proteins of Lactobacillus casei 1134. J Sci Food Agric 95:1303–1312. https://doi.org/10.1002/jsfa.6823

    Article  CAS  PubMed  Google Scholar 

  328. Chicon R, Belloque J, Alonso E, Lopez-Fandino R (2009) Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocolloids 23:593–599. https://doi.org/10.1016/j.foodhyd.2008.04.001

    Article  CAS  Google Scholar 

  329. Villas-Boas MB, Benedé S, de Lima Zollner R, Netto FM, Molina E (2015) Epitopes resistance to the simulated gastrointestinal digestion of β-lactoglobulin submitted to two-step enzymatic modification. Food Res Int 72:191–197. https://doi.org/10.1016/j.foodres.2015.03.044

    Article  CAS  Google Scholar 

  330. Yoshino K, Sakai K, Mizuha Y, Shimizuike A, Yamamoto S (2004) Peptic digestibility of raw and heat-coagulated hen’s egg white proteins at acidic pH range. Int J Food Sci Nutri 55:635–640. https://doi.org/10.1080/09637480412331350173

    Article  CAS  Google Scholar 

  331. Benedé S, López-Expósito I, Giménez G, Grishina G, Bardina L, Sampson HA, López-Fandiño R, Molina E (2014) Mapping of IgE epitopes in in vitro gastroduodenal digests of β-lactoglobulin produced with human and simulated fluids. Food Res Int 62:1127–1133. https://doi.org/10.1016/j.foodres.2014.05.069

    Article  CAS  Google Scholar 

  332. Takagi K, Teshima R, Okunuki H, Itoh S, Kawasaki N, Kawanishi T, Hayakawa T, Kohno Y, Urisu A, Sawada Ji (2005) Kinetic analysis of pepsin digestion of chicken egg white ovomucoid and allergenic potential of pepsin fragments. Int Arch Allergy Immunol 136:23–32. https://doi.org/10.1159/000082581

    Article  CAS  PubMed  Google Scholar 

  333. Claude M, Lupi R, Picariello G, Drouet M, Larré C, Denery-Papini S, Brossard C (2019) Digestion differently affects the ability of native and thermally aggregated ovalbumin to trigger basophil activation. Food Res Int 118:108–114. https://doi.org/10.1016/j.foodres.2017.11.040

    Article  CAS  PubMed  Google Scholar 

  334. Bublin M, Eiwegger T, Breiteneder H (2014) Do lipids influence the allergic sensitization process? J Allergy Clin Immunol 134:521–529. https://doi.org/10.1016/j.jaci.2014.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Pekar J, Ret D, Untersmayr E (2018) Stability of allergens. Mol Immunol 100:14–20. https://doi.org/10.1016/j.molimm.2018.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Luo C, Guo Y, Li Z, Ahmed I, Pramod SN, Gao X, Lv L, Lin H (2020) Lipid emulsion enhances fish allergen parvalbumin’s resistance to in vitro digestion and IgG/IgE binding capacity. Food Chem 302:125333. https://doi.org/10.1016/j.foodchem.2019.125333

    Article  CAS  PubMed  Google Scholar 

  337. Moreno FJ, Mackie AR, Mills ENC (2005) Phospholipid interactions protect the milk allergen α-lactalbumin from proteolysis during in vitro digestion. J Agric Food Chem 53:9810–9816. https://doi.org/10.1021/jf0515227

    Article  CAS  PubMed  Google Scholar 

  338. Mandalari G, Adel-Patient K, Barkholt V, Baro C, Bennett L, Bublin M, Gaier S, Graser G, Ladics GS, Mierzejewska D, Vassilopoulou E, Vissers YM, Zuidmeer L, Rigby NM, Salt LJ, Defernez M, Mulholland F, Mackie AR, Wickham MSJ, Mills ENC (2009) In vitro digestibility of β-casein and β-lactoglobulin under simulated human gastric and duodenal conditions: A multi-laboratory evaluation. Regul Toxicol Pharmacol 55:372–381. https://doi.org/10.1016/j.yrtph.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  339. Lv L, Lin H, Li Z, Wang J, Ahmed I, Chen H (2017) Changes of structure and IgE binding capacity of shrimp (Metapenaeus ensis) tropomyosin followed by acrolein treatment. Food Funct 8:1028–1036. https://doi.org/10.1039/C6FO01479H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are all part of the COST Action FA1402 entitled ImpARAS—Improving Allergy Risk Assessment Strategy for New Food Proteins. The authors thank all ImpARAS members for their active participation in the ImpARAS meetings and lively discussions.

Funding

The authors highly appreciate the support from the COST Office. This article is based upon work from COST Action FA1402, supported by COST (European Cooperation in Science and Technology, www.cost.eu). This work was also supported by Fundação para a Ciência e Tecnologia under the Partnership Agreement UIDB 50006/2020 and by the projects AlleRiskAssess—PTDC/BAA-AGR/31720/2017. C.V. is grateful to FCT grant (PD/BD/114576/2016) financed by POPH-QREN (subsidised by FSE and MCTES). J.C. acknowledges FCT for the research contract (SFRH/BPD/102404/2014). T.C.V. is grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia through grant number OI172024. P.M.R. and D.S. are grateful to FCT through project UIDB/04326/2020 and Mar2020 16-02-01-FMP-0014—“ALLYFISH”. J.K. and A.K. acknowledge PRIDE program grants (PRIDE/11012546/NEXTIMMUNE). J.K. also acknowledges FNR (Fonds National de la Recherche) and the PMC (Personalised Medicine Consortium).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, data collection, and analysis. All authors have taken part in the discussions and writing of the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Joana Costa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, J., Villa, C., Verhoeckx, K. et al. Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens?. Clinic Rev Allerg Immunol 62, 1–36 (2022). https://doi.org/10.1007/s12016-020-08826-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08826-1

Keywords

Navigation