Skip to main content
Log in

Animal Lipocalin Allergens

  • ALLERGENS (RK BUSH, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Lipocalins represent the most important group of inhalant animal allergens. For some of them, three-dimensional protein structures have been resolved, but their functions are still elusive. Lipocalins generally display a low sequence identity between family members. The characterization of new lipocalin allergens has revealed however that some of them display a high sequence identity to lipocalins from another species. They constitute a new group of potentially cross-reactive molecules which, in addition to serum albumins, may contribute to allergic cross-reactions between animal dander of different species. However, the clinical relevance of cross-reactivity needs to be assessed. Further studies are needed to understand which of these animal lipocalins are the primary allergens and which are cross-reacting molecules. The use of single, well characterized allergens for diagnosis will allow the identification of the sensitizing animal, which is a prerequisite for specific immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Radauer C, Bublin M, Wagner S, et al. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121:847–52 e7.

    Article  PubMed  CAS  Google Scholar 

  2. Grzyb J, Latowski D, Strzalka K. Lipocalins–a family portrait. J Plant Physiol. 2006;163:895–915.

    Article  PubMed  CAS  Google Scholar 

  3. •• Flower DR, North ACT, Sansom CE. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta Protein Struct Mol Enzymol. 2000;1482:9–24. Review based on structure comparisons between lipocalins, but also members of the calycin superfamily.

    Article  CAS  Google Scholar 

  4. Flower DR. The lipocalin protein family: structure and function. Biochem J. 1996;318(Pt 1):1–14.

    PubMed  CAS  Google Scholar 

  5. Ganfornina MD, Gutierrez G, Bastiani M, Sanchez D. A phylogenetic analysis of the lipocalin protein family. Mol Biol Evol. 2000;17:114–26.

    Article  PubMed  CAS  Google Scholar 

  6. Sanchez D, Ganfornina MD, Gutierrez G, Marin A. Exon-intron structure and evolution of the Lipocalin gene family. Mol Biol Evol. 2003;20:775–83.

    Article  PubMed  CAS  Google Scholar 

  7. •• Virtanen T, Kinnunen T. Mammalian allergens. Clin Allergy Immunol. 2008;21:201–18. Short descriptions on mammalian allergens.

    PubMed  CAS  Google Scholar 

  8. Morgenstern JP, Griffith IJ, Brauer AW, et al. Amino acid sequence of Fel dI, the major allergen of the domestic cat: protein sequence analysis and cDNA cloning. Proc Natl Acad Sci U S A. 1991;88:9690–4.

    Article  PubMed  CAS  Google Scholar 

  9. Smith W, Butler AJ, Hazell LA, et al. Fel d 4, a cat lipocalin allergen. Clin Exp Allergy. 2004;34:1732–8.

    Article  PubMed  CAS  Google Scholar 

  10. Smith W, O'Neil SE, Hales BJ, et al. Two Newly Identified Cat Allergens: the von Ebner Gland Protein Fel d 7 and the Latherin-Like Protein Fel d 8. Int Arch Allergy Immunol. 2011;156:159–70.

    Article  PubMed  CAS  Google Scholar 

  11. Hilger C, Kohnen M, Grigioni F, et al. Allergic cross-reactions between cat and pig serum albumin. Study at the protein and DNA levels. Allergy. 1997;52:179–87.

    Article  PubMed  CAS  Google Scholar 

  12. Ichikawa K, Vailes LD, Pomes A, Chapman MD. Molecular cloning, expression and modelling of cat allergen, cystatin (Fel d 3), a cysteine protease inhibitor. Clin Exp Allergy. 2001;31:1279–86.

    Article  PubMed  CAS  Google Scholar 

  13. Adedoyin J, Gronlund H, Oman H, et al. Cat IgA, representative of new carbohydrate cross-reactive allergens. J Allergy Clin Immunol. 2007;119:640–5.

    Article  PubMed  CAS  Google Scholar 

  14. Konieczny A, Morgenstern JP, Bizinkauskas CB, et al. The major dog allergens, Can f 1 and Can f 2, are salivary lipocalin proteins: cloning and immunological characterization of the recombinant forms. Immunol. 1997;92:577–86.

    Article  CAS  Google Scholar 

  15. Ramadour M, Guetat M, Guetat J, et al. Dog factor differences in Can f 1 allergen production. Allergy. 2005;60:1060–4.

    Article  PubMed  CAS  Google Scholar 

  16. Spitzauer S, Schweiger C, Sperr WR, et al. Molecular characterization of dog albumin as a cross-reactive allergen. J Allergy Clin Immunol. 1994;93:614–27.

    Article  PubMed  CAS  Google Scholar 

  17. Mattsson L, Lundgren T, Everberg H, et al. Prostatic kallikrein: a new major dog allergen. J Allergy Clin Immunol. 2009;123:362–8.

    Article  PubMed  CAS  Google Scholar 

  18. Mattsson L, Lundgren T, Olsson P, et al. Molecular and immunological characterization of Can f 4: a dog dander allergen cross-reactive with a 23 kDa odorant-binding protein in cow dander. Clin Exp Allergy. 2010;40:1276–87.

    Article  PubMed  CAS  Google Scholar 

  19. Hilger C, Swiontek K, Arumugam K, et al. Identification of a new major dog allergen highly cross-reactive with Fel d 4 in a population of cat- and dog-sensitized patients. J Allergy Clin Immunol. 2012;129:1149–51e2.

    Article  PubMed  CAS  Google Scholar 

  20. Gregoire C, Rosinski-Chupin I, Rabillon J, et al. cDNA cloning and sequencing reveal the major horse allergen Equ c1 to be a glycoprotein member of the lipocalin superfamily. J Biol Chem. 1996;271:32951–9.

    Article  PubMed  CAS  Google Scholar 

  21. Dandeu JP, Rabillon J, Divanovic A, et al. Hydrophobic interaction chromatography for isolation and purification of Equ.cl, the horse major allergen. J Chromatogr. 1993;621:23–31.

    Article  PubMed  CAS  Google Scholar 

  22. Lascombe MB, Gregoire C, Poncet P, et al. Crystal structure of the allergen Equ c 1. A dimeric lipocalin with restricted IgE-reactive epitopes. J Biol Chem. 2000;275:21572–7.

    Article  PubMed  CAS  Google Scholar 

  23. Goubran Botros H, Poncet P, Rabillon J, et al. Biochemical characterization and surfactant properties of horse allergens. Eur J Biochem. 2001;268:3126–36.

    Article  PubMed  CAS  Google Scholar 

  24. Bulone V, Krogstad-Johnsen T, Smestad-Paulsen B. Separation of horse dander allergen proteins by two-dimensional electrophoresis–molecular characterisation and identification of Equ c 2.0101 and Equ c 2.0102 as lipocalin proteins. Eur J Biochem. 1998;253:202–11.

    Article  PubMed  CAS  Google Scholar 

  25. Cabanas R, Lopez-Serrano MC, Carreira J, et al. Importance of albumin in cross–reactivity among cat, dog and horse allergens. J Investig Allergol Clin Immunol. 2000;10:71–7.

    PubMed  CAS  Google Scholar 

  26. Mantyjarvi R, Parkkinen S, Rytkonen M, et al. Complementary DNA cloning of the predominant allergen of bovine dander: a new member in the lipocalin family. J Allergy Clin Immunol. 1996;97:1297–303.

    Article  PubMed  CAS  Google Scholar 

  27. Rautiainen J, Rytkonen M, Syrjanen K, et al. Tissue localization of bovine dander allergen Bos d 2. J Allergy Clin Immunol. 1998;101:349–53.

    Article  PubMed  CAS  Google Scholar 

  28. Ylonen J, Mantyjarvi R, Taivainen A, Virtanen T. IgG and IgE antibody responses to cow dander and urine in farmers with cow-induced asthma. Clin Exp Allergy. 1992;22:83–90.

    Article  PubMed  CAS  Google Scholar 

  29. Rouvinen J, Rautiainen J, Virtanen T, et al. Probing the molecular basis of allergy. Three-dimensional structure of the bovine lipocalin allergen Bos d 2. J Biol Chem. 1999;274:2337–43.

    Article  PubMed  CAS  Google Scholar 

  30. Restani P, Ballabio C, Di Lorenzo C, et al. Molecular aspects of milk allergens and their role in clinical events. Anal Bioanal Chem. 2009;395:47–56.

    Article  PubMed  CAS  Google Scholar 

  31. Walls AF. Newman Taylor AJ, Longbottom JL. Allergy to guinea pigs: I. Allergenic activities of extracts derived from the pelt, saliva, urine and other sources. Clin Allergy. 1985;15:241–51.

    Article  PubMed  CAS  Google Scholar 

  32. Fahlbusch B, Rudeschko O, Schlott B, et al. Further characterization of IgE-binding antigens from guinea pig hair as new members of the lipocalin family. Allergy. 2003;58:629–34.

    Article  PubMed  CAS  Google Scholar 

  33. Fahlbusch B, Rudeschko O, Szilagyi U, et al. Purification and partial characterization of the major allergen, Cav p 1, from guinea pig Cavia porcellus. Allergy. 2002;57:417–22.

    Article  PubMed  CAS  Google Scholar 

  34. Hilger C, Swiontek K, Kler S, et al. Evaluation of 2 new recombinant guinea–pig lipocalins, Cav p 2 and Cav p 3, in the diagnosis of guinea–pig allergy. Clin Exp Allergy. 2011;41:899–908.

    Article  PubMed  CAS  Google Scholar 

  35. Payne AP. The harderian gland: a tercentennial review. J Anat. 1994;185:1–49.

    PubMed  Google Scholar 

  36. Baker J, Berry A, Boscato LM, et al. Identification of some rabbit allergens as lipocalins. Clin Exp Allergy. 2001;31:303–12.

    Article  PubMed  CAS  Google Scholar 

  37. Price JA, Longbottom JL. Allergy to rabbits. II. Identification and characterization of a major rabbit allergen. Allergy. 1988;43:39–48.

    Article  PubMed  CAS  Google Scholar 

  38. Warner JA, Longbottom JL. Allergy to rabbits. III. Further identification and characterisation of rabbit allergens. Allergy. 1991;46:481–91.

    Article  PubMed  CAS  Google Scholar 

  39. Garibotti M, Navarrini A, Pisanelli AM, Pelosi P. Three odorant-binding proteins from rabbit nasal mucosa. Chem Senses. 1997;22:383–90.

    Article  PubMed  CAS  Google Scholar 

  40. • Cavaggioni A, Mucignat-Caretta C. Major urinary proteins, [α]2U-globulins and aphrodisin. Biochim Biophys Acta Protein Struct Mol Enzymol. 2000;1482:218–28. Comprehensive review on MUP biology.

    Article  CAS  Google Scholar 

  41. Robertson DH, Cox KA, Gaskell SJ, et al. Molecular heterogeneity in the Major Urinary Proteins of the house mouse Mus musculus. Biochem J. 1996;316:265–72.

    PubMed  CAS  Google Scholar 

  42. Bush RK. Mechanism and epidemiology of laboratory animal allergy. ILAR J. 2001;42:4–11.

    PubMed  CAS  Google Scholar 

  43. Matsui EC, Eggleston PA, Buckley TJ, et al. Household mouse allergen exposure and asthma morbidity in inner-city preschool children. Ann Allergy Asthma Immunol. 2006;97:514–20.

    Article  PubMed  Google Scholar 

  44. Phipatanakul W, Eggleston PA, Wright EC, et al. Mouse allergen. II. The relationship of mouse allergen exposure to mouse sensitization and asthma morbidity in inner-city children with asthma. J Allergy Clin Immunol. 2000;106:1075–80.

    Article  PubMed  CAS  Google Scholar 

  45. Ferrari E, Breda D, Longhi R, et al. In search of a vaccine for mouse allergy: significant reduction of Mus m 1 allergenicity by structure-guided single-point mutations. Int Arch Allergy Immunol. 2012;157:226–37.

    Article  PubMed  CAS  Google Scholar 

  46. Bayard C, Holmquist L, Vesterberg O. Purification and identification of allergenic alpha (2u)-globulin species of rat urine. Biochim Biophys Acta. 1996;1290:129–34.

    Article  PubMed  Google Scholar 

  47. Gordon S, Tee RD, Stuart MC, Newman Taylor AJ. Analysis of allergens in rat fur and saliva. Allergy. 2001;56:563–7.

    Article  PubMed  CAS  Google Scholar 

  48. Gordon S, Tee RD, Newman Taylor AJ. Analysis of the allergenic composition of rat dust. Clin Exp Allergy. 1996;26:533–41.

    Article  PubMed  CAS  Google Scholar 

  49. Phillips JF, Lockey RF. Exotic pet allergy. J Allergy Clin Immunol. 2009;123:513–5.

    Article  PubMed  Google Scholar 

  50. Lim DL, Chan RM, Wen H, et al. Anaphylaxis after hamster bites–identification of a novel allergen. Clin Exp Allergy. 2004;34:1122–3.

    Article  PubMed  CAS  Google Scholar 

  51. Torres JA. Pastor–Vargas C, de las Heras M, et al. An odorant-binding protein as a new allergen from Siberian hamster (Phodopus sungorus). Int Arch Allergy Immunol. 2012;157:109–12.

    Article  PubMed  CAS  Google Scholar 

  52. Arruda LK, Vailes LD, Hayden ML, et al. Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem. 1995;270:31196–201.

    Article  PubMed  CAS  Google Scholar 

  53. Tan YW, Chan SL, Ong TC, et al. Structures of 2 major allergens, Bla g 4 and Per a 4, from cockroaches and their IgE binding epitopes. J Biol Chem. 2009;284:3148–57.

    Article  PubMed  CAS  Google Scholar 

  54. Paddock CD, McKerrow JH, Hansell E, et al. Identification, cloning, and recombinant expression of procalin, a major triatomine allergen. J Immunol. 2001;167:2694–9.

    PubMed  CAS  Google Scholar 

  55. Hilger C, Bessot JC, Hutt N, et al. IgE-mediated anaphylaxis caused by bites of the pigeon tick Argas reflexus: cloning and expression of the major allergen Arg r 1. J Allergy Clin Immunol. 2005;115:617–22.

    Article  PubMed  CAS  Google Scholar 

  56. Marshall N, Liebhaber M, Dyer Z, Saxon A. The prevalence of allergic sensitization to Triatoma protracta (Heteroptera: Reduviidae) in a Southern California, USA, community. J Med Entomol. 1986;23:117–24.

    PubMed  CAS  Google Scholar 

  57. Paesen GC, Adams PL, Harlos K, et al. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol Cell. 1999;3:661–71.

    Article  PubMed  CAS  Google Scholar 

  58. Kleine-Tebbe J, Heinatz A, Gräser I, et al. Bites of the European pigeon tick (Argas reflexus): risk of IgE-mediated sensitizations and anaphylactic reactions. J Allergy Clin Immunol. 2006;117:190–5.

    Article  PubMed  CAS  Google Scholar 

  59. • Tegoni M, Pelosi P, Vincent F, et al. Mammalian odorant binding proteins. Biochim Biophys Acta Protein Struct Mol Enzymol. 2000;1482:229–40. Comprehensive review on OBP function and structure.

    Article  CAS  Google Scholar 

  60. Papes F, Logan DW, Stowers L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell. 2010;141:692–703.

    Article  PubMed  CAS  Google Scholar 

  61. Chamero P, Marton TF, Logan DW, et al. Identification of protein pheromones that promote aggressive behaviour. Nat. 2007;450:899–902.

    Article  CAS  Google Scholar 

  62. Zhou Y, Jiang L, Rui L. Identification of MUP1 as a regulator for glucose and lipid metabolism in mice. J Biol Chem. 2009;284:11152–9.

    Article  PubMed  CAS  Google Scholar 

  63. Yusifov TN, Abduragimov AR, Gasymov OK, Glasgow BJ. Endonuclease activity in lipocalins. Biochem J. 2000;347:815–9.

    Article  PubMed  CAS  Google Scholar 

  64. •• Salo PiM, Sever ML, Zeldin DC. Indoor allergens in school and day care environments. Journal of Allergy and Clinical Immunology. 2009;124:185–92.e9. Review summarizing data from indoor allergen exposure studies in relation to asthma and allergy.

    Article  PubMed  Google Scholar 

  65. •• Virtanen T, Kinnunen T, Rytkonen–Nissinen M. Mammalian lipocalin allergens–insights into their enigmatic allergenicity. Clin Exp Allergy. 2012;42:494–504. Review analyzing the different molecular features inherant to lipocalins in an attempt to explain their allergenicity.

    Article  PubMed  CAS  Google Scholar 

  66. Royer PJ, Emara M, Yang C, et al. The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J Immunol. 2010;185:1522–31.

    Article  PubMed  CAS  Google Scholar 

  67. Wojnar P, Lechner M, Merschak P, Redl B. Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. J Biol Chem. 2001;276:20206–12.

    Article  PubMed  CAS  Google Scholar 

  68. Fluckinger M, Merschak P, Hermann M, et al. Lipocalin-interacting–membrane–receptor (LIMR) mediates cellular internalization of [β]-lactoglobulin. Biochimica et Biophysica Acta (BBA) –. Biomembr. 2008;1778:342–7.

    Article  CAS  Google Scholar 

  69. Emara M, Royer PJ, Mahdavi J, et al. Retagging identifies dendritic cell-specific intercellular adhesion molecule-3 (ICAM3)–grabbing non–integrin (DC–SIGN) protein as a novel receptor for a major allergen from house dust mite. J Biol Chem. 2012;287:5756–63.

    Article  PubMed  CAS  Google Scholar 

  70. Saarelainen S, Rytkonen-Nissinen M, Rouvinen J, et al. Animal-derived lipocalin allergens exhibit immunoglobulin E cross–reactivity. Clin Exp Allergy. 2008;38:374–81.

    Article  PubMed  CAS  Google Scholar 

  71. Madhurantakam C, Nilsson OB, Uchtenhagen H, et al. Crystal structure of the dog lipocalin allergen Can f 2: implications for cross-reactivity to the cat allergen Fel d 4. J Mol Biol. 2010;401:68–83.

    Article  PubMed  CAS  Google Scholar 

  72. Nilsson OB, Binnmyr J, Zoltowska A, et al. Characterization of the dog lipocalin allergen Can f 6: the role in cross-reactivity with cat and horse. Allergy. 2012;67:751–7.

    Article  PubMed  CAS  Google Scholar 

  73. Platts-Mills TAE. The role of indoor allergens in chronic allergic disease. J Allergy Clin Immunol. 2007;119:297–302.

    Article  PubMed  CAS  Google Scholar 

  74. • Hauser M, Roulias A, Ferreira F, Egger M. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol. 2010;6:1. Description and classification of plant allergen families.

    Article  PubMed  Google Scholar 

  75. Egger M, Hauser M, Mari A, et al. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep. 2010;10:326–35.

    Article  PubMed  CAS  Google Scholar 

  76. Waterhouse AM, Procter JB, Martin DM, et al. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinforma. 2009;25:1189–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Projects of C.H. and A.K. are supported by the Ministry of Higher Education and Research of Luxembourg. The authors thank Arnaud Müller for his assistance on the lipocalin alignment figure.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Hilger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilger, C., Kuehn, A. & Hentges, F. Animal Lipocalin Allergens. Curr Allergy Asthma Rep 12, 438–447 (2012). https://doi.org/10.1007/s11882-012-0283-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-012-0283-2

Keywords

Navigation