Skip to main content

Advertisement

Log in

Animal Models of Autoimmune Liver Diseases: a Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Autoimmune liver diseases (AILDs) are potentially life-threatening chronic liver diseases which include autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and recently characterized IgG4-related sclerosing cholangitis. They are caused by immune attack on hepatocytes or bile ducts, with different mechanisms and clinical manifestations. The etiologies of AILDs include a susceptible genetic background, environment insults, infections, and changes of commensal microbiota, but remain complicated. Understanding of the underlying mechanisms of AILDs is mandatory for early diagnosis and intervention, which is of great importance for better prognosis. Thus, animal models are developed to mimic the pathogenesis, find biomarkers for early diagnosis, and for therapeutic attempts of AILDs. However, no animal models can fully recapitulate features of certain AILD, especially the late stages of diseases. Certain limitations include different living condition, cell composition, and time frame of disease development and resolution. Moreover, there is no IgG4 in rodents which exists in human. Nevertheless, the understanding and therapy of AILDs have been greatly advanced by the development and mechanistic investigation of animal models. This review will provide a comprehensive overview of traditional and new animal models that recapitulate different features and etiologies of distinct AILDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABD:

Autoimmune biliary disease

AE2:

Anion exchanger 2

α-GalCer:

α-Galactosylceramide

AIH:

Autoimmune hepatitis

AILD:

Autoimmune liver disease

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AMAs:

Antimitochondrial antibodies

ANAs:

Antinuclear antibodies

AU-rich:

Adenylate uridine-rich

BCOADC-E2:

Branched chain 2-oxo acid dehydrogenase complex-E2

BDP:

Bile duct protein

BEC:

Bile duct epithelial cell

BSA:

Bovine serum albumin

ConA:

Concanavalin A

CTLA-4:

Cytotoxic T lymphocyte-associated protein 4

CYP2D6:

Cytochrome P4502D6

dnTGF-βRII:

Dominant-negative TGF-β receptor II

DDC:

3,5-Diethoxycarbonyl-1,4-dihydrocollidine

DSS:

Dextran sulfate sodium

E. coli :

Escherichia coli

FAH:

Fumarylacetoacetate hydrolase

FTCD:

Formiminotransferase cyclodeaminase

GWAS:

Genome-wide association study

HLA:

Human leukocyte antigen

IBD:

Inflammatory bowel disease

Idd:

Insulin-dependent diabetes

iNKT:

Invariant natural killer T

IL-2Rα:

Interleukin-2 receptor α

IgG4-RD:

Immunoglobulin G4–related disease

LCA:

Lithocholic acid

LPS:

Lipopolysaccharide

LSEC:

Liver sinusoidal endothelial cells

LSP:

Liver-specific membrane protein

MHV:

Mouse hepatic virus

NOD:

Non-obese diabetic

N. aromaticivorans :

Novosphingobium aromaticivorans

NTx:

Neonatal thymectomy

OGDC-E2:

2-Oxoglutarate dehydrogenase complex-E2

2-OA:

2-Octyl acid

pANCA:

Perinuclear antineutrophil cytoplasmic antibodies

PBC:

Primary biliary cholangitis

PDC-E2:

Pyruvate dehydrogenase complex-E2

PSC:

Primary sclerosing cholangitis

SLE:

Systemic lupus erythematosus

SMAs:

Smooth muscle antibodies

TNBS:

2,4,6-Trinitrobenzene sulfonic acid

Tregs:

Regulatory T cells

UDCA:

Ursodeoxycholic acid

References

  1. Doherty DG (2016) Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun 66:60–75

    CAS  PubMed  Google Scholar 

  2. Horst AK, Neumann K, Diehl L, Tiegs G (2016) Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 13(3):277–292

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163

    CAS  PubMed  Google Scholar 

  4. Mattner J (2011) Genetic susceptibility to autoimmune liver disease. World J Hepatol 3(1):1–7

    PubMed  PubMed Central  Google Scholar 

  5. Cristoferi L, Nardi A, Ronca V, Invernizzi P, Mells G, Carbone M (2018) Prognostic models in primary biliary cholangitis. J Autoimmun 95:171–178

    CAS  PubMed  Google Scholar 

  6. Terziroli Beretta-Piccoli B et al (2019) The challenges of primary biliary cholangitis: what is new and what needs to be done. J Autoimmun:102328

    PubMed  Google Scholar 

  7. Liberal R, Grant CR, Mieli-Vergani G, Vergani D (2013) Autoimmune hepatitis: a comprehensive review. J Autoimmun 41:126–139

    CAS  PubMed  Google Scholar 

  8. Huang C et al (2019) Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 104:102333

    PubMed  Google Scholar 

  9. Mieli-Vergani G et al (2018) Autoimmune hepatitis. Nat Rev Dis Primers 4:18017

    PubMed  Google Scholar 

  10. Manns MP, Lohse AW, Vergani D (2015) Autoimmune hepatitis—update 2015. J Hepatol 62(1 Suppl):S100–S111

    PubMed  Google Scholar 

  11. Christen U (2019) Animal models of autoimmune hepatitis. Biochim Biophys Acta Mol basis Dis 1865(5):970–981

    CAS  PubMed  Google Scholar 

  12. Manns MP, Czaja AJ, Gorham JD, Krawitt EL, Mieli-Vergani G, Vergani D, Vierling JM, American Association for the Study of Liver Diseases (2010) Diagnosis and management of autoimmune hepatitis. Hepatology 51(6):2193–2213

    CAS  PubMed  Google Scholar 

  13. Hennes EM, Zeniya M, Czaja AJ, Parés A, Dalekos GN, Krawitt EL, Bittencourt PL, Porta G, Boberg KM, Hofer H, Bianchi FB, Shibata M, Schramm C, Eisenmann de Torres B, Galle PR, McFarlane I, Dienes HP, Lohse AW, International Autoimmune Hepatitis Group (2008) Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 48(1):169–176

    PubMed  Google Scholar 

  14. Gatselis NK, Zachou K, Koukoulis GK, Dalekos GN (2015) Autoimmune hepatitis, one disease with many faces: etiopathogenetic, clinico-laboratory and histological characteristics. World J Gastroenterol 21(1):60–83

    CAS  PubMed  PubMed Central  Google Scholar 

  15. European Association for the Study of the, L (2015) EASL Clinical Practice Guidelines: autoimmune hepatitis. J Hepatol 63(4):971–1004

    Google Scholar 

  16. Floreani A et al (2018) Etiopathogenesis of autoimmune hepatitis. J Autoimmun 95:133–143

    CAS  PubMed  Google Scholar 

  17. Taubert R et al (2018) Novel therapeutic targets in autoimmune hepatitis. J Autoimmun 95:34–46

    CAS  PubMed  Google Scholar 

  18. Kido M, Watanabe N, Okazaki T, Akamatsu T, Tanaka J, Saga K, Nishio A, Honjo T, Chiba T (2008) Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology 135(4):1333–1343

    CAS  PubMed  Google Scholar 

  19. Maruoka R et al (2013) Splenectomy prolongs the effects of corticosteroids in mouse models of autoimmune hepatitis. Gastroenterology 145(1):209–220.e9

    CAS  PubMed  Google Scholar 

  20. Aoki N et al (2011) Dysregulated generation of follicular helper T cells in the spleen triggers fatal autoimmune hepatitis in mice. Gastroenterology 140(4):1322–1333.e1–5

    CAS  PubMed  Google Scholar 

  21. Iwamoto S, Kido M, Aoki N, Nishiura H, Maruoka R, Ikeda A, Okazaki T, Chiba T, Watanabe N (2012) IFN-γ is reciprocally involved in the concurrent development of organ-specific autoimmunity in the liver and stomach. Autoimmunity 45(2):186–198

    CAS  PubMed  Google Scholar 

  22. Iwamoto S, Kido M, Aoki N, Nishiura H, Maruoka R, Ikeda A, Okazaki T, Chiba T, Watanabe N (2013) TNF-α is essential in the induction of fatal autoimmune hepatitis in mice through upregulation of hepatic CCL20 expression. Clin Immunol 146(1):15–25

    CAS  PubMed  Google Scholar 

  23. Tiegs G, Hentschel J, Wendel A (1992) A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 90(1):196–203

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G (1995) Concanavalin A-induced T-cell-mediated hepatic injury in mice: the role of tumor necrosis factor. Hepatology 21(1):190–198

    CAS  PubMed  Google Scholar 

  25. Heymann F, Hamesch K, Weiskirchen R, Tacke F (2015) The concanavalin A model of acute hepatitis in mice. Lab Anim 49(1 Suppl):12–20

    CAS  PubMed  Google Scholar 

  26. Takeda K, Hayakawa Y, van Kaer L, Matsuda H, Yagita H, Okumura K (2000) Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci U S A 97(10):5498–5503

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Küsters S, Gantner F, Künstle G, Tiegs G (1996) Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 111(2):462–471

    PubMed  Google Scholar 

  28. Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 12(12):845–857

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Osman Y, Kawamura T, Naito T, Takeda K, van Kaer L, Okumura K, Abo T (2000) Activation of hepatic NKT cells and subsequent liver injury following administration of alpha-galactosylceramide. Eur J Immunol 30(7):1919–1928

    CAS  PubMed  Google Scholar 

  30. Matsumoto H, Kawamura T, Kobayashi T, Kanda Y, Kawamura H, Abo T (2011) Coincidence of autoantibody production with the activation of natural killer T cells in alpha-galactosylceramide-mediated hepatic injury. Immunology 133(1):21–28

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Biburger M, Tiegs G (2005) Alpha-galactosylceramide-induced liver injury in mice is mediated by TNF-alpha but independent of Kupffer cells. J Immunol 175(3):1540–1550

    CAS  PubMed  Google Scholar 

  32. Wang H, Feng D, Park O, Yin S, Gao B (2013) Invariant NKT cell activation induces neutrophil accumulation and hepatitis: opposite regulation by IL-4 and IFN-gamma. Hepatology 58(4):1474–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wondimu Z, Santodomingo-Garzon T, le T, Swain MG (2010) Protective role of interleukin-17 in murine NKT cell-driven acute experimental hepatitis. Am J Pathol 177(5):2334–2346

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuriki J, Murakami H, Kakumu S, Sakamoto N, Yokochi T, Nakashima I, Kato N (1983) Experimental autoimmune hepatitis in mice after immunization with syngeneic liver proteins together with the polysaccharide of Klebsiella pneumoniae. Gastroenterology 84(3):596–603

    CAS  PubMed  Google Scholar 

  35. Lohse AW, Dienes HP, Meyer zum Buschenfelde KH (1998) Suppression of murine experimental autoimmune hepatitis by T-cell vaccination or immunosuppression. Hepatology 27(6):1536–1543

    CAS  PubMed  Google Scholar 

  36. Ma X, Jia YT, Qiu DK (2007) Inhibition of p38 mitogen-activated protein kinase attenuates experimental autoimmune hepatitis: involvement of nuclear factor kappa B. World J Gastroenterol 13(31):4249–4254

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu X, Jiang X, Liu R, Wang L, Qian T, Zheng Y, Deng Y, Huang E, Xu F, Wang JY, Chu Y (2015) B cells expressing CD11b effectively inhibit CD4+ T-cell responses and ameliorate experimental autoimmune hepatitis in mice. Hepatology 62(5):1563–1575

    CAS  PubMed  Google Scholar 

  38. Ma Y et al (2006) Polyclonal T-cell responses to cytochrome P450IID6 are associated with disease activity in autoimmune hepatitis type 2. Gastroenterology 130(3):868–882

    CAS  PubMed  Google Scholar 

  39. Christen U, Holdener M, Hintermann E (2010) Cytochrome P450 2D6 as a model antigen. Dig Dis 28(1):80–85

    PubMed  PubMed Central  Google Scholar 

  40. Hintermann E, Ehser J, Bayer M, Pfeilschifter JM, Christen U (2013) Mechanism of autoimmune hepatic fibrogenesis induced by an adenovirus encoding the human liver autoantigen cytochrome P450 2D6. J Autoimmun 44:49–60

    CAS  PubMed  Google Scholar 

  41. Holdener M, Hintermann E, Bayer M, Rhode A, Rodrigo E, Hintereder G, Johnson EF, Gonzalez FJ, Pfeilschifter J, Manns MP, Herrath Mv, Christen U (2008) Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med 205(6):1409–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ehser J, Holdener M, Christen S, Bayer M, Pfeilschifter JM, Hintermann E, Bogdanos D, Christen U (2013) Molecular mimicry rather than identity breaks T-cell tolerance in the CYP2D6 mouse model for human autoimmune hepatitis. J Autoimmun 42:39–49

    CAS  PubMed  Google Scholar 

  43. Hardtke-Wolenski M, Fischer K, Noyan F, Schlue J, Falk CS, Stahlhut M, Woller N, Kuehnel F, Taubert R, Manns MP, Jaeckel E (2013) Genetic predisposition and environmental danger signals initiate chronic autoimmune hepatitis driven by CD4+ T cells. Hepatology 58(2):718–728

    CAS  PubMed  Google Scholar 

  44. Dywicki J, Buitrago-Molina LE, Pietrek J, Lieber M, Broering R, Khera T, Schlue J, Manns MP, Wedemeyer H, Jaeckel E, Hardtke-Wolenski M (2020) Autoimmune hepatitis induction can occur in the liver. Liver Int 40(2):377–381

    CAS  PubMed  Google Scholar 

  45. Lapierre P et al (2004) A murine model of type 2 autoimmune hepatitis: xenoimmunization with human antigens. Hepatology 39(4):1066–1074

    CAS  PubMed  Google Scholar 

  46. Duhalde-Vega M, Loureiro ME, Mathieu PA, Retegui LA (2006) The peptide specificities of the autoantibodies elicited by mouse hepatitis virus A59. J Autoimmun 27(3):203–209

    CAS  PubMed  Google Scholar 

  47. Aparicio JL, Peña C, Retegui LA (2011) Autoimmune hepatitis-like disease in C57BL/6 mice infected with mouse hepatitis virus A59. Int Immunopharmacol 11(10):1591–1598

    CAS  PubMed  Google Scholar 

  48. Tang Y, Li H, Li J, Liu Y, Li Y, Zhou J, Zhou J, Lu X, Zhao W, Hou J, Wang XY, Chen Z, Zuo D (2018) Macrophage scavenger receptor 1 contributes to pathogenesis of fulminant hepatitis via neutrophil-mediated complement activation. J Hepatol 68(4):733–743

    CAS  PubMed  Google Scholar 

  49. Hirschfield GM, Gershwin ME (2013) The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol 8:303–330

    CAS  PubMed  Google Scholar 

  50. Carey EJ, Ali AH, Lindor KD (2015) Primary biliary cirrhosis. Lancet 386(10003):1565–1575

    CAS  PubMed  Google Scholar 

  51. Selmi C, Bowlus CL, Gershwin ME, Coppel RL (2011) Primary biliary cirrhosis. Lancet 377(9777):1600–1609

    CAS  PubMed  Google Scholar 

  52. Sun Y, Haapanen K, Li B, Zhang W, van de Water J, Gershwin ME (2015) Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 48(2–3):285–300

    PubMed  Google Scholar 

  53. Oertelt S et al (2006) Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 177(3):1655–1660

    CAS  PubMed  Google Scholar 

  54. Moritoki Y et al (2007) AMA production in primary biliary cirrhosis is promoted by the TLR9 ligand CpG and suppressed by potassium channel blockers. Hepatology 45(2):314–322

    CAS  PubMed  Google Scholar 

  55. Bernuzzi F, Fenoglio D, Battaglia F, Fravega M, Gershwin ME, Indiveri F, Ansari AA, Podda M, Invernizzi P, Filaci G (2010) Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis. J Autoimmun 35(3):176–180

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mao TK, Lian ZX, Selmi C, Ichiki Y, Ashwood P, Ansari AA, Coppel RL, Shimoda S, Ishibashi H, Gershwin ME (2005) Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology 42(4):802–808

    CAS  PubMed  Google Scholar 

  57. Lan RY et al (2006) Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 43(4):729–737

    PubMed  Google Scholar 

  58. Bosch A, Dumortier J, Maucort-Boulch D, Scoazec JY, Wendum D, Conti F, Morard I, Rubbia-Brandt L, Terris B, Radenne S, Abenavoli L, Poupon R, Chazouillères O, Calmus Y, Boillot O, Giostra E, Corpechot C (2015) Preventive administration of UDCA after liver transplantation for primary biliary cirrhosis is associated with a lower risk of disease recurrence. J Hepatol 63(6):1449–1458

    CAS  PubMed  Google Scholar 

  59. Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, Kowdley KV, Vincent C, Bodhenheimer HC Jr, Parés A, Trauner M, Marschall HU, Adorini L, Sciacca C, Beecher-Jones T, Castelloe E, Böhm O, Shapiro D (2015) Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148(4):751–761 e8

    CAS  PubMed  Google Scholar 

  60. Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, Drenth JP, Pockros PJ, Regula J, Beuers U, Trauner M, Jones DE, Floreani A, Hohenester S, Luketic V, Shiffman M, van Erpecum K, Vargas V, Vincent C, Hirschfield GM, Shah H, Hansen B, Lindor KD, Marschall HU, Kowdley KV, Hooshmand-Rad R, Marmon T, Sheeron S, Pencek R, MacConell L, Pruzanski M, Shapiro D, POISE Study Group (2016) A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 375(7):631–643

    CAS  PubMed  Google Scholar 

  61. Katsumi T, Tomita K, Leung PS, Yang GX, Gershwin ME, Ueno Y (2015) Animal models of primary biliary cirrhosis. Clin Rev Allergy Immunol 48(2–3):142–153

    PubMed  Google Scholar 

  62. Wang J et al (2014) Animal models of primary biliary cirrhosis. Semin Liver Dis 34(3):285–296

    CAS  PubMed  Google Scholar 

  63. Webb GJ, Hirschfield GM (2017) Primary biliary cholangitis in 2016: high-definition PBC: biology, models and therapeutic advances. Nat Rev Gastroenterol Hepatol 14(2):76–78

    PubMed  Google Scholar 

  64. Mariotti V, Cadamuro M, Spirli C, Fiorotto R, Strazzabosco M, Fabris L (2019) Animal models of cholestasis: an update on inflammatory cholangiopathies. Biochim Biophys Acta Mol basis Dis 1865(5):954–964

    CAS  PubMed  Google Scholar 

  65. Tanakaa A, Leung PS, Young HA, Gershwin ME (2017) Toward solving the etiological mystery of primary biliary cholangitis. Hepatol Commun 1(4):275–287

    PubMed  Google Scholar 

  66. Pollheimer MJ, Fickert P (2015) Animal models in primary biliary cirrhosis and primary sclerosing cholangitis. Clin Rev Allergy Immunol 48(2–3):207–217

    PubMed  Google Scholar 

  67. Ueno Y et al (2010) Murine models of autoimmune cholangitis. Curr Opin Gastroenterol 26(3):274–279

    CAS  PubMed  Google Scholar 

  68. Aoki CA, Borchers AT, Ridgway WM, Keen CL, Ansari AA, Gershwin ME (2005) NOD mice and autoimmunity. Autoimmun Rev 4(6):373–379

    CAS  PubMed  Google Scholar 

  69. Yang GX et al (2011) CD8 T cells mediate direct biliary ductule damage in nonobese diabetic autoimmune biliary disease. J Immunol 186(2):1259–1267

    CAS  PubMed  Google Scholar 

  70. Irie J, Wu Y, Wicker LS, Rainbow D, Nalesnik MA, Hirsch R, Peterson LB, Leung PS, Cheng C, Mackay IR, Gershwin ME, Ridgway WM (2006) NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 203(5):1209–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Moritoki Y, Tsuda M, Tsuneyama K, Zhang W, Yoshida K, Lian ZX, Yang GX, Ridgway WM, Wicker LS, Ansari AA, Gershwin ME (2011) B cells promote hepatic inflammation, biliary cyst formation, and salivary gland inflammation in the NOD.c3c4 model of autoimmune cholangitis. Cell Immunol 268(1):16–23

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lucas PJ et al (2006) Dysregulation of IL-15-mediated T-cell homeostasis in TGF-beta dominant-negative receptor transgenic mice. Blood 108(8):2789–2795

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sawada S, Scarborough JD, Killeen N, Littman DR (1994) A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77(6):917–929

    CAS  PubMed  Google Scholar 

  74. Kawata K et al (2013) Clonality, activated antigen-specific CD8(+) T cells, and development of autoimmune cholangitis in dnTGFbetaRII mice. Hepatology 58(3):1094–1104

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang CY, Leung PS, Yang GX, Kenny TP, Zhang W, Coppel R, Norman GL, Ansari AA, Mackay IR, Worman HJ, Gershwin ME (2012) Epitope-specific anti-nuclear antibodies are expressed in a mouse model of primary biliary cirrhosis and are cytokine-dependent. Clin Exp Immunol 168(3):261–267

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tsuda M, Zhang W, Yang GX, Tsuneyama K, Ando Y, Kawata K, Park O, Leung PS, Coppel RL, Ansari AA, Ridgway WM, Gao B, Lian ZX, Flavell R, He XS, Gershwin ME (2013) Deletion of interleukin (IL)-12p35 induces liver fibrosis in dominant-negative TGFbeta receptor type II mice. Hepatology 57(2):806–816

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang GX, Lian ZX, Chuang YH, Moritoki Y, Lan RY, Wakabayashi K, Ansari AA, Flavell RA, Ridgway WM, Coppel RL, Tsuneyama K, Mackay IR, Gershwin ME (2008) Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 47(6):1974–1982

    PubMed  PubMed Central  Google Scholar 

  78. Kita H, Lian ZX, van de Water J, He XS, Matsumura S, Kaplan M, Luketic V, Coppel RL, Ansari AA, Gershwin ME (2002) Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 195(1):113–123

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kita H et al (2002) Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 109(9):1231–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang JB et al (2016) Successful treatment of murine autoimmune cholangitis by parabiosis: implications for hematopoietic therapy. J Autoimmun 66:108–117

    CAS  PubMed  Google Scholar 

  81. Wang YH, Yang W, Yang JB, Jia YJ, Tang W, Gershwin ME, Ridgway WM, Lian ZX (2015) Systems biologic analysis of T regulatory cells genetic pathways in murine primary biliary cirrhosis. J Autoimmun 59:26–37

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zeissig S, Peuker K, Iyer S, Gensollen T, Dougan SK, Olszak T, Kaser A, Blumberg RS (2017) CD1d-restricted pathways in hepatocytes control local natural killer T cell homeostasis and hepatic inflammation. Proc Natl Acad Sci U S A 114(39):10449–10454

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434(7032):525–529

    CAS  PubMed  Google Scholar 

  84. Chuang YH, Lian ZX, Yang GX, Shu SA, Moritoki Y, Ridgway WM, Ansari AA, Kronenberg M, Flavell RA, Gao B, Gershwin ME (2008) Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 47(2):571–580

    CAS  PubMed  Google Scholar 

  85. Gao B (2016) Basic liver immunology. Cell Mol Immunol 13(3):265–266

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, Das A, Lopes AR, Borrow P, Williams K, Humphreys E, Afford S, Adams DH, Bertoletti A, Maini MK (2007) Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 204(3):667–680

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hudspeth K, Pontarini E, Tentorio P, Cimino M, Donadon M, Torzilli G, Lugli E, Della Bella S, Gershwin ME, Mavilio D (2013) The role of natural killer cells in autoimmune liver disease: a comprehensive review. J Autoimmun 46:55–65

    CAS  PubMed  Google Scholar 

  88. Zhao ZB et al (2019) Liver-resident NK cells suppress autoimmune cholangitis and limit the proliferation of CD4(+) T cells. Cell Mol Immunol

  89. Moritoki Y, Zhang W, Tsuneyama K, Yoshida K, Wakabayashi K, Yang GX, Bowlus C, Ridgway WM, Ueno Y, Ansari AA, Coppel RL, Mackay IR, Flavell RA, Gershwin ME, Lian ZX (2009) B cells suppress the inflammatory response in a mouse model of primary biliary cirrhosis. Gastroenterology 136(3):1037–1047

    CAS  PubMed  Google Scholar 

  90. Dhirapong A, Lleo A, Yang GX, Tsuneyama K, Dunn R, Kehry M, Packard TA, Cambier JC, Liu FT, Lindor K, Coppel RL, Ansari AA, Gershwin ME (2011) B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology 53(2):527–535

    CAS  PubMed  Google Scholar 

  91. Moritoki Y, Lian ZX, Lindor K, Tuscano J, Tsuneyama K, Zhang W, Ueno Y, Dunn R, Kehry M, Coppel RL, Mackay IR, Gershwin ME (2009) B-cell depletion with anti-CD20 ameliorates autoimmune cholangitis but exacerbates colitis in transforming growth factor-beta receptor II dominant negative mice. Hepatology 50(6):1893–1903

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yoshida K, Yang GX, Zhang W, Tsuda M, Tsuneyama K, Moritoki Y, Ansari AA, Okazaki K, Lian ZX, Coppel RL, Mackay IR, Gershwin ME (2009) Deletion of interleukin-12p40 suppresses autoimmune cholangitis in dominant negative transforming growth factor beta receptor type II mice. Hepatology 50(5):1494–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma HD, Ma WT, Liu QZ, Zhao ZB, Liu MZ, Tsuneyama K, Gao JM, Ridgway WM, Ansari AA, Gershwin ME, Fei YY, Lian ZX (2017) Chemokine receptor CXCR3 deficiency exacerbates murine autoimmune cholangitis by promoting pathogenic CD8(+) T cell activation. J Autoimmun 78:19–28

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Teng MW, Bowman EP, McElwee J, Smyth MJ, Casanova JL, Cooper AM, Cua DJ (2015) IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med 21(7):719–729

    CAS  PubMed  Google Scholar 

  95. Ando Y, Yang GX, Tsuda M, Kawata K, Zhang W, Nakajima T, Tsuneyama K, Leung P, Lian ZX, Okazaki K, Ridgway WM, Norman GL, Ansari AA, He XS, Coppel RL, Gershwin ME (2012) The immunobiology of colitis and cholangitis in interleukin-23p19 and interleukin-17A deleted dominant negative form of transforming growth factor beta receptor type II mice. Hepatology 56(4):1418–1426

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Klein C, Wüstefeld T, Assmus U, Roskams T, Rose-John S, Müller M, Manns MP, Ernst M, Trautwein C (2005) The IL-6-gp130-STAT3 pathway in hepatocytes triggers liver protection in T cell-mediated liver injury. J Clin Invest 115(4):860–869

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang W, Tsuda M, Yang GX, Tsuneyama K, Rong G, Ridgway WM, Ansari AA, Flavell RA, Coppel RL, Lian ZX, Gershwin ME (2010) Deletion of interleukin-6 in mice with the dominant negative form of transforming growth factor beta receptor II improves colitis but exacerbates autoimmune cholangitis. Hepatology 52(1):215–222

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma HD, Zhao ZB, Ma WT, Liu QZ, Gao CY, Li L, Wang J, Tsuneyama K, Liu B, Zhang W, Zhou Y, Gershwin ME, Lian ZX (2018) Gut microbiota translocation promotes autoimmune cholangitis. J Autoimmun 95:47–57

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Aoki CA, Roifman CM, Lian ZX, Bowlus CL, Norman GL, Shoenfeld Y, Mackay IR, Gershwin ME (2006) IL-2 receptor alpha deficiency and features of primary biliary cirrhosis. J Autoimmun 27(1):50–53

    CAS  PubMed  Google Scholar 

  100. Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, Gasteiger G, Feng Y, Fontenot JD, Rudensky AY (2016) An essential role for the IL-2 receptor in Treg cell function. Nat Immunol 17(11):1322–1333

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen J, Hou X, Jia H, Cui G, Wu Z, Wang L, Lu C, Wu W, Wei Y, Uede T, Li L, Lian Z, Diao H (2017) Regulatory T cells with a defect in inhibition on co-stimulation deteriorated primary biliary cholangitis. Oncotarget 8(65):108406–108417

    PubMed  PubMed Central  Google Scholar 

  102. Zhang W, Sharma R, Ju ST, He XS, Tao Y, Tsuneyama K, Tian Z, Lian ZX, Fu SM, Gershwin ME (2009) Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology 49(2):545–552

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wakabayashi K, Lian ZX, Moritoki Y, Lan RY, Tsuneyama K, Chuang YH, Yang GX, Ridgway W, Ueno Y, Ansari AA, Coppel RL, Mackay IR, Gershwin ME (2006) IL-2 receptor alpha(−/−) mice and the development of primary biliary cirrhosis. Hepatology 44(5):1240–1249

    CAS  PubMed  Google Scholar 

  104. Hsu W, Zhang W, Tsuneyama K, Moritoki Y, Ridgway WM, Ansari AA, Coppel RL, Lian ZX, Mackay I, Gershwin ME (2009) Differential mechanisms in the pathogenesis of autoimmune cholangitis versus inflammatory bowel disease in interleukin-2Ralpha(−/−) mice. Hepatology 49(1):133–140

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lan RY, Selmi C, Gershwin ME (2008) The regulatory, inflammatory, and T cell programming roles of interleukin-2 (IL-2). J Autoimmun 31(1):7–12

    CAS  PubMed  Google Scholar 

  106. Yao Y, Yang W, Yang YQ, Ma HD, Lu FT, Li L, Tao YY, Tsuneyama K, Zhang W, Friedman S, Gershwin ME, Lian ZX (2014) Distinct from its canonical effects, deletion of IL-12p40 induces cholangitis and fibrosis in interleukin-2Ralpha(−/−) mice. J Autoimmun 51:99–108

    CAS  PubMed  Google Scholar 

  107. Lan RY, Salunga TL, Tsuneyama K, Lian ZX, Yang GX, Hsu W, Moritoki Y, Ansari AA, Kemper C, Price J, Atkinson JP, Coppel RL, Gershwin ME (2009) Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun 32(1):43–51

    CAS  PubMed  Google Scholar 

  108. Liu X, Invernizzi P, Lu Y, Kosoy R, Lu Y, Bianchi I, Podda M, Xu C, Xie G, Macciardi F, Selmi C, Lupoli S, Shigeta R, Ransom M, Lleo A, Lee AT, Mason AL, Myers RP, Peltekian KM, Ghent CN, Bernuzzi F, Zuin M, Rosina F, Borghesio E, Floreani A, Lazzari R, Niro G, Andriulli A, Muratori L, Muratori P, Almasio PL, Andreone P, Margotti M, Brunetto M, Coco B, Alvaro D, Bragazzi MC, Marra F, Pisano A, Rigamonti C, Colombo M, Marzioni M, Benedetti A, Fabris L, Strazzabosco M, Portincasa P, Palmieri VO, Tiribelli C, Croce L, Bruno S, Rossi S, Vinci M, Prisco C, Mattalia A, Toniutto P, Picciotto A, Galli A, Ferrari C, Colombo S, Casella G, Morini L, Caporaso N, Colli A, Spinzi G, Montanari R, Gregersen PK, Heathcote EJ, Hirschfield GM, Siminovitch KA, Amos CI, Gershwin ME, Seldin MF (2010) Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 42(8):658–660

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu QZ et al (2018) The CXC chemokine receptor 3 inhibits autoimmune cholangitis via CD8(+) T cells but promotes colitis via CD4(+) T cells. Front Immunol 9:1090

    PubMed  PubMed Central  Google Scholar 

  110. Arellano G et al (2015) Stage-specific role of interferon-gamma in experimental autoimmune encephalomyelitis and multiple sclerosis. Front Immunol 6:492

    PubMed  PubMed Central  Google Scholar 

  111. Bakheet T, Frevel M, Williams BR, Greer W, Khabar KS (2001) ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res 29(1):246–254

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hodge DL, Berthet C, Coppola V, Kastenmüller W, Buschman MD, Schaughency PM, Shirota H, Scarzello AJ, Subleski JJ, Anver MR, Ortaldo JR, Lin F, Reynolds DA, Sanford ME, Kaldis P, Tessarollo L, Klinman DM, Young HA (2014) IFN-gamma AU-rich element removal promotes chronic IFN-gamma expression and autoimmunity in mice. J Autoimmun 53:33–45

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bae HR, Leung PS, Tsuneyama K, Valencia JC, Hodge DL, Kim S, Back T, Karwan M, Merchant AS, Baba N, Feng D, Park O, Gao B, Yang GX, Gershwin ME, Young HA (2016) Chronic expression of interferon-gamma leads to murine autoimmune cholangitis with a female predominance. Hepatology 64(4):1189–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bae HR, Hodge DL, Yang GX, Leung PSC, Chodisetti SB, Valencia JC, Sanford M, Fenimore JM, Rahman ZSM, Tsuneyama K, Norman GL, Gershwin ME, Young HA (2018) The interplay of type I and type II interferons in murine autoimmune cholangitis as a basis for sex-biased autoimmunity. Hepatology 67(4):1408–1419

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP (2010) The biliary HCO(3)(−) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52(4):1489–1496

    CAS  PubMed  Google Scholar 

  116. Molinaro A, Marschall HU (2017) Why doesn’t primary biliary cholangitis respond to immunosuppressive medications? Curr Hepatol Rep 16(2):119–123

    PubMed  PubMed Central  Google Scholar 

  117. Hohenester S et al (2012) A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55(1):173–183

    CAS  PubMed  Google Scholar 

  118. Salas JT, Banales JM, Sarvide S, Recalde S, Ferrer A, Uriarte I, Oude Elferink RP, Prieto J, Medina JF (2008) Ae2a,b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology 134(5):1482–1493

    CAS  PubMed  Google Scholar 

  119. Melero S, Spirlì C, Zsembery A, Medina JF, Joplin RE, Duner E, Zuin M, Neuberger JM, Prieto J, Strazzabosco M (2002) Defective regulation of cholangiocyte Cl-/HCO3(−) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 35(6):1513–1521

    CAS  PubMed  Google Scholar 

  120. Poupon R, Ping C, Chrétien Y, Corpechot C, Chazouillères O, Simon T, Heath SC, Matsuda F, Poupon RE, Housset C, Barbu V (2008) Genetic factors of susceptibility and of severity in primary biliary cirrhosis. J Hepatol 49(6):1038–1045

    CAS  PubMed  Google Scholar 

  121. Perricone C, Colafrancesco S, Mazor RD, Soriano A, Agmon-Levin N, Shoenfeld Y (2013) Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: unveiling the pathogenic, clinical and diagnostic aspects. J Autoimmun 47:1–16

    CAS  PubMed  Google Scholar 

  122. Selmi C, Leung PS, Sherr DH, Diaz M, Nyland JF, Monestier M, Rose NR, Gershwin ME (2012) Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 39(4):272–284

    PubMed  Google Scholar 

  123. Chen RC, Naiyanetr P, Shu SA, Wang J, Yang GX, Kenny TP, Guggenheim KC, Butler JD, Bowlus C, Tao MH, Kurth MJ, Ansari AA, Kaplan M, Coppel RL, Lleo A, Gershwin ME, Leung PS (2013) Antimitochondrial antibody heterogeneity and the xenobiotic etiology of primary biliary cirrhosis. Hepatology 57(4):1498–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wakabayashi K et al (2009) Induction of autoimmune cholangitis in non-obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization. Clin Exp Immunol 155(3):577–586

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PSC, Ansari AA, Gershwin ME, Anaya JM (2018) Molecular mimicry and autoimmunity. J Autoimmun 95:100–123

    CAS  PubMed  Google Scholar 

  126. Amano K et al (2005) Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol 174(9):5874–5883

    CAS  PubMed  Google Scholar 

  127. Wang J et al (2013) Antimitochondrial antibody recognition and structural integrity of the inner lipoyl domain of the E2 subunit of pyruvate dehydrogenase complex. J Immunol 191(5):2126–2133

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wakabayashi K, Lian ZX, Leung PS, Moritoki Y, Tsuneyama K, Kurth MJ, Lam KS, Yoshida K, Yang GX, Hibi T, Ansari AA, Ridgway WM, Coppel RL, Mackay IR, Gershwin ME (2008) Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 48(2):531–540

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Syu BJ et al (2016) Dual roles of IFN-γ and IL-4 in the natural history of murine autoimmune cholangitis: IL-30 and implications for precision medicine. Sci Rep 6:34884

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kawata K, Tsuda M, Yang GX, Zhang W, Tanaka H, Tsuneyama K, Leung P, He XS, Knechtle S, Ansari AA, Coppel RL, Gershwin ME (2013) Identification of potential cytokine pathways for therapeutic intervention in murine primary biliary cirrhosis. PLoS One 8(9):e74225

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Shimoda S, Tsuneyama K, Kikuchi K, Harada K, Nakanuma Y, Nakamura M, Ishibashi H, Hisamoto S, Niiro H, Leung PS, Ansari AA, Gershwin ME, Akashi K (2012) The role of natural killer (NK) and NK T cells in the loss of tolerance in murine primary biliary cirrhosis. Clin Exp Immunol 168(3):279–284

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu SJ, Yang YH, Tsuneyama K, Leung PS, Illarionov P, Gershwin ME, Chuang YH (2011) Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology 53(3):915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chang CH, Chen YC, Zhang W, Leung PS, Gershwin ME, Chuang YH (2015) Innate immunity drives the initiation of a murine model of primary biliary cirrhosis. PLoS One 10(3):e0121320

    PubMed  PubMed Central  Google Scholar 

  134. Chang CH, Chen YC, Yu YH, Tao MH, Leung PS, Ansari AA, Gershwin ME, Chuang YH (2014) Innate immunity drives xenobiotic-induced murine autoimmune cholangitis. Clin Exp Immunol 177(2):373–380

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ma WT et al (2017) A mouse model of autoimmune cholangitis via syngeneic bile duct protein immunization. Sci Rep 7(1):15246

    PubMed  PubMed Central  Google Scholar 

  136. Selmi C, Balkwill DL, Invernizzi P, Ansari AA, Coppel RL, Podda M, Leung PS, Kenny TP, van de Water J, Nantz MH, Kurth MJ, Gershwin ME (2003) Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology 38(5):1250–1257

    CAS  PubMed  Google Scholar 

  137. Padgett KA, Selmi C, Kenny TP, Leung PS, Balkwill DL, Ansari AA, Coppel RL, Gershwin ME (2005) Phylogenetic and immunological definition of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis. J Autoimmun 24(3):209–219

    CAS  PubMed  Google Scholar 

  138. Mattner J, Savage PB, Leung P, Oertelt SS, Wang V, Trivedi O, Scanlon ST, Pendem K, Teyton L, Hart J, Ridgway WM, Wicker LS, Gershwin ME, Bendelac A (2008) Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 3(5):304–315

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Parikh-Patel A, Gold EB, Worman H, Krivy KE, Gershwin ME (2001) Risk factors for primary biliary cirrhosis in a cohort of patients from the United States. Hepatology 33(1):16–21

    CAS  PubMed  Google Scholar 

  140. Hou X, Yang Y, Chen J, Jia H, Zeng P, Lv L, Lu Y, Liu X, Diao H (2019) TCRbeta repertoire of memory T cell reveals potential role for Escherichia coli in the pathogenesis of primary biliary cholangitis. Liver Int 39(5):956–966

    CAS  PubMed  Google Scholar 

  141. Wang JJ et al (2014) Escherichia coli infection induces autoimmune cholangitis and anti-mitochondrial antibodies in non-obese diabetic (NOD).B6 (Idd10/Idd18) mice. Clin Exp Immunol 175(2):192–201

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bogdanos DP, Baum H, Grasso A, Okamoto M, Butler P, Ma Y, Rigopoulou E, Montalto P, Davies ET, Burroughs AK, Vergani D (2004) Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol 40(1):31–39

    CAS  PubMed  Google Scholar 

  143. Dyson JK, Beuers U, Jones DEJ, Lohse AW, Hudson M (2018) Primary sclerosing cholangitis. Lancet 391(10139):2547–2559

    PubMed  Google Scholar 

  144. Lazaridis KN, LaRusso NF (2016) Primary sclerosing cholangitis. N Engl J Med 375(12):1161–1170

    PubMed  PubMed Central  Google Scholar 

  145. Sabino J, Vieira-Silva S, Machiels K, Joossens M, Falony G, Ballet V, Ferrante M, van Assche G, van der Merwe S, Vermeire S, Raes J (2016) Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 65(10):1681–1689

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hov JR, Boberg KM, Karlsen TH (2008) Autoantibodies in primary sclerosing cholangitis. World J Gastroenterol 14(24):3781–3791

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D (2018) The clinical usage and definition of autoantibodies in immune-mediated liver disease: a comprehensive overview. J Autoimmun 95:144–158

    CAS  PubMed  Google Scholar 

  148. Smit JJ et al (1993) Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75(3):451–462

    CAS  PubMed  Google Scholar 

  149. Tebbi A, Levillayer F, Jouvion G, Fiette L, Soubigou G, Varet H, Boudjadja N, Cairo S, Hashimoto K, Suzuki AM, Carninci P, Carissimo A, di Bernardo D, Wei Y (2016) Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress. Carcinogenesis 37(1):39–48

    CAS  PubMed  Google Scholar 

  150. Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D (2005) Mdr2 (Abcb4)−/− mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 43(6):1045–1054

    CAS  PubMed  Google Scholar 

  151. Ikenaga N, Liu SB, Sverdlov DY, Yoshida S, Nasser I, Ke Q, Kang PM, Popov Y (2015) A new Mdr2(−/−) mouse model of sclerosing cholangitis with rapid fibrosis progression, early-onset portal hypertension, and liver cancer. Am J Pathol 185(2):325–334

    CAS  PubMed  Google Scholar 

  152. Halilbasic E, Fiorotto R, Fickert P, Marschall HU, Moustafa T, Spirli C, Fuchsbichler A, Gumhold J, Silbert D, Zatloukal K, Langner C, Maitra U, Denk H, Hofmann AF, Strazzabosco M, Trauner M (2009) Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2−/− mice. Hepatology 49(6):1972–1981

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Fickert P, Pollheimer MJ, Beuers U, Lackner C, Hirschfield G, Housset C, Keitel V, Schramm C, Marschall HU, Karlsen TH, Melum E, Kaser A, Eksteen B, Strazzabosco M, Manns M, Trauner M, International PSC Study Group (IPSCSG) (2014) Characterization of animal models for primary sclerosing cholangitis (PSC). J Hepatol 60(6):1290–1303

    PubMed  PubMed Central  Google Scholar 

  154. Peng ZW, Rothweiler S, Wei G, Ikenaga N, Liu SB, Sverdlov DY, Vaid KA, Longhi MS, Kuang M, Robson SC, Popov YV (2017) The ectonucleotidase ENTPD1/CD39 limits biliary injury and fibrosis in mouse models of sclerosing cholangitis. Hepatol Commun 1(9):957–972

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Tedesco D, Thapa M, Chin CY, Ge Y, Gong M, Li J, Gumber S, Speck P, Elrod EJ, Burd EM, Kitchens WH, Magliocca JF, Adams AB, Weiss DS, Mohamadzadeh M, Grakoui A (2018) Alterations in intestinal microbiota lead to production of interleukin 17 by intrahepatic gammadelta T-cell receptor-positive cells and pathogenesis of cholestatic liver disease. Gastroenterology 154(8):2178–2193

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Tabibian JH, O’Hara SP, Trussoni CE, Tietz PS, Splinter PL, Mounajjed T, Hagey LR, LaRusso N (2016) Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology 63(1):185–196

    CAS  PubMed  Google Scholar 

  157. Kotb MA (2012) Molecular mechanisms of ursodeoxycholic acid toxicity & side effects: ursodeoxycholic acid freezes regeneration & induces hibernation mode. Int J Mol Sci 13(7):8882–8914

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Allegretti JR, Kassam Z, Carrellas M, Mullish BH, Marchesi JR, Pechlivanis A, Smith M, Gerardin Y, Timberlake S, Pratt DS, Korzenik JR (2019) Fecal microbiota transplantation in patients with primary Sclerosing cholangitis: a pilot clinical trial. Am J Gastroenterol 114(7):1071–1079

    PubMed  Google Scholar 

  159. Fickert P et al (2007) A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 171(2):525–536

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Marzioni M, Saccomanno S, Agostinelli L, Rychlicki C, de Minicis S, Pierantonelli I, Trauner M, Fickert P, Müller T, Shanmukhappa K, Trozzi L, Candelaresi C, Baroni GS, Benedetti A (2013) PDX-1/Hes-1 interactions determine cholangiocyte proliferative response to injury in rodents: possible implications for sclerosing cholangitis. J Hepatol 58(4):750–756

    CAS  PubMed  Google Scholar 

  161. Karlsen TH, Folseraas T, Thorburn D, Vesterhus M (2017) Primary sclerosing cholangitis—a comprehensive review. J Hepatol 67(6):1298–1323

    PubMed  Google Scholar 

  162. Trauner M, Fickert P, Wagner M (2007) MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 27(1):77–98

    CAS  PubMed  Google Scholar 

  163. Erkes DA, Selvan SR (2014) Hapten-induced contact hypersensitivity, autoimmune reactions, and tumor regression: plausibility of mediating antitumor immunity. J Immunol Res 2014:175265

    PubMed  PubMed Central  Google Scholar 

  164. Mourelle M et al (1995) Induction of chronic cholangitis in the rat by trinitrobenzenesulfonic acid. J Hepatol 22(2):219–225

    CAS  PubMed  Google Scholar 

  165. Chiang JY (2017, 2029) Recent advances in understanding bile acid homeostasis. F1000Res 6

  166. Fickert P et al (2006) Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice. Am J Pathol 168(2):410–422

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chiang JYL, Ferrell JM (2018) Bile acid metabolism in liver pathobiology. Gene Expr 18(2):71–87

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Fabris L et al (2006) Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases. Hepatology 43(5):1001–1012

    CAS  PubMed  Google Scholar 

  169. Kamisawa T, Zen Y, Pillai S, Stone JH (2015) IgG4-related disease. Lancet 385(9976):1460–1471

    CAS  PubMed  Google Scholar 

  170. Culver EL, Chapman RW (2016) IgG4-related hepatobiliary disease: an overview. Nat Rev Gastroenterol Hepatol 13(10):601–612

    CAS  PubMed  Google Scholar 

  171. Yamada K, Zuka M, Ito K, Mizuguchi K, Kakuchi Y, Onoe T, Suzuki Y, Yamagishi M, Izui S, Malissen M, Malissen B, Kawano M (2018) LatY136F knock-in mouse model for human IgG4-related disease. PLoS One 13(6):e0198417

    PubMed  PubMed Central  Google Scholar 

  172. Liberal R, Grant CR (2016) Cirrhosis and autoimmune liver disease: current understanding. World J Hepatol 8(28):1157–1168

    PubMed  PubMed Central  Google Scholar 

  173. Larson L, James M, Gossard A (2016) Cholestatic liver injury: care of patients with primary biliary cholangitis or primary sclerosing cholangitis. AACN Adv Crit Care 27(4):441–452

    PubMed  Google Scholar 

  174. Xie YQ, Ma HD, Lian ZX (2016) Epigenetics and primary biliary cirrhosis: a comprehensive review and implications for autoimmunity. Clin Rev Allergy Immunol 50(3):390–403

    CAS  PubMed  Google Scholar 

  175. Chascsa D, Carey EJ, Lindor KD (2017) Old and new treatments for primary biliary cholangitis. Liver Int 37(4):490–499

    PubMed  Google Scholar 

  176. Tanaka A (2019) Emerging novel treatments for autoimmune liver diseases. Hepatol Res 49(5):489–499

    PubMed  Google Scholar 

  177. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A, Sekaly RP, Jenkins MK, Vezys V, Haining WN, Jameson SC, Masopust D (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532(7600):512–516

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Rosshart SP et al (2019) Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365(6452)

  179. Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch J, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel de Villena F, Yewdell JW, Rehermann B (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171(5):1015–1028 e13

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (2017ZT07S054), the National Natural Science Foundation of China (81801607, 81873877, 81901652), China Postdoctoral Science Foundation (2018 M643095), and State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases Fund, China (SKL-HIDCA-2018-4).

Author information

Authors and Affiliations

Authors

Contributions

Shou-Pei, Zhen-Hua Bian, Zhi-Bin Zhao, Jinjun Wang, and Liang Li wrote the manuscript. Shou-Pei Liu, Zhen-Hua Bian, and Liang Li designed and drew the figures. Weici Zhang, Patrick S.C. Leung, and Zhe-Xiong Lian wrote and edited the manuscript.

Corresponding authors

Correspondence to Liang Li or Zhe-Xiong Lian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SP., Bian, ZH., Zhao, ZB. et al. Animal Models of Autoimmune Liver Diseases: a Comprehensive Review. Clinic Rev Allerg Immunol 58, 252–271 (2020). https://doi.org/10.1007/s12016-020-08778-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08778-6

Keywords

Navigation