Skip to main content

Animal Models of Primary Biliary Cirrhosis: Materials and Methods

  • Protocol
  • First Online:
Autoimmunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 900))

Abstract

Primary biliary cirrhosis (PBC) is a female-predominant autoimmune disease of the liver characterized by immune-mediated destruction of the intrahepatic bile ducts and the presence of antimitochondrial antibodies (AMAs). There have been limited advances in understanding the molecular pathogenesis of the disease because of the difficulty in accessing human tissues and the absence of appropriate animal models. Recently, several unique murine models that manifest the serological, biochemical, and histological features similar to human PBC have been described. In this article, we discuss the current data on three spontaneous and two induced murine models of PBC. The spontaneous models are: (a) NOD.c3c4, (b) dominant negative TGF-β receptor II (dnTGFβRII), and (c) IL-2Rα−/− mouse line models. The two induced models are: (a) xenobiotic and (b) Novosphingobium aromaticivorans immunized mice. These animal models provide various important platforms to further investigate the etiology and mechanisms of pathogenesis in PBC. Laboratory methodologies and the protocols that are used in evaluating these animal models are described. Finally, we stress the importance of realizing the strengths and limitations of the animal models are essential in data analysis and their application in therapeutic studies.

Supported in part by National Institutes of Health grants DK074768 DK090019, DK067003, and DK39588.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PBC:

Primary biliary cirrhosis

AMA:

Antimitochondrial antibody

PDC-E2:

E2 subunits of pyruvate dehydrogenase

BCOADC-E2:

2-Oxo acid dehydrogenase

OGDC-E2:

2-Oxo-glutarate dehydrogenase

NOD:

Non-obese diabetic

dnTGFβRII:

Dominant negative TGF-β receptor II

IDDM:

Insulin-dependent diabetes mellitus

BSA:

Bovine serum albumin

2-OA:

2-Octynoic acid

NKT:

Natural killer T cells

MHC:

Major histocompatibility complex

References

  1. Gershwin ME, Ansari AA, Mackay IR, Nakanuma Y, Nishio A, Rowley MJ, Coppel RL (2000) Primary biliary cirrhosis: an orchestrated immune response against epithelial cells. Immunol Rev 174:210–225

    Article  PubMed  CAS  Google Scholar 

  2. Leung PS, Chuang DT, Wynn RM, Cha S, Danner DJ, Ansari A, Coppel RL, Gershwin ME (1995) Autoantibodies to BCOADC-E2 in patients with primary biliary cirrhosis recognize a conformational epitope. Hepatology 22:505–513

    PubMed  CAS  Google Scholar 

  3. Moteki S, Leung PS, Dickson ER, Van Thiel DH, Galperin C, Buch T, Alarcon-Segovia D, Kershenobich D, Kawano K, Coppel RL et al (1996) Epitope mapping and reactivity of autoantibodies to the E2 component of 2-oxoglutarate dehydrogenase complex in primary biliary cirrhosis using recombinant 2-oxoglutarate dehydrogenase complex. Hepatology 23:436–444

    Article  PubMed  CAS  Google Scholar 

  4. Van de Water J, Ansari A, Prindiville T, Coppel RL, Ricalton N, Kotzin BL, Liu S, Roche TE, Krams SM, Munoz S, Gershwin ME (1995) Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J Exp Med 181:723–733

    Article  PubMed  Google Scholar 

  5. Ishibashi H, Shimoda S, Gershwin ME (2005) The immune response to mitochondrial autoantigens. Semin Liver Dis 25:337–346

    Article  PubMed  CAS  Google Scholar 

  6. Chuang YH, Ridgway WM, Ueno Y, Gershwin ME (2008) Animal models of primary biliary cirrhosis. Clin Liver Dis 12:333–347, ix

    Article  PubMed  Google Scholar 

  7. Folci M, Meda F, Gershwin ME, Selmi C (2011) Cutting-edge issues in primary biliary cirrhosis. Clin Rev Allergy Immunol DOI 10.1007/s12016-011-8253–3

    Google Scholar 

  8. Gershwin ME, Mackay IR (2008) The causes of primary biliary cirrhosis: convenient and inconvenient truths. Hepatology 47:737–745

    Article  PubMed  Google Scholar 

  9. Leung PS, Coppel RL, Gershwin ME (2005) Etiology of primary biliary cirrhosis: the search for the culprit. Semin Liver Dis 25:327–336

    Article  PubMed  Google Scholar 

  10. Liu X, Invernizzi P, Lu Y, Kosoy R, Bianchi I, Podda M, Xu C, Xie G, Macciardi F, Selmi C, Lupoli S, Shigeta R, Ransom M, Lleo A, Lee AT, Mason AL, Myers RP, Peltekian KM, Ghent CN, Bernuzzi F, Zuin M, Rosina F, Borghesio E, Floreani A, Lazzari R, Niro G, Andriulli A, Muratori L, Muratori P, Almasio PL, Andreone P, Margotti M, Brunetto M, Coco B, Alvaro D, Bragazzi MC, Marra F, Pisano A, Rigamonti C, Colombo M, Marzioni M, Benedetti A, Fabris L, Strazzabosco M, Portincasa P, Palmieri VO, Tiribelli C, Croce L, Bruno S, Rossi S, Vinci M, Prisco C, Mattalia A, Toniutto P, Picciotto A, Galli A, Ferrari C, Colombo S, Casella G, Morini L, Caporaso N, Colli A, Spinzi G, Montanari R, Gregersen PK, Heathcote EJ, Hirschfield GM, Siminovitch KA, Amos CI, Gershwin ME, Seldin MF (2010) Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 42:658–660

    Article  PubMed  CAS  Google Scholar 

  11. Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J, Ansari AA, Coppel RL, Worman HJ, Gores GJ, Gershwin ME (2010) Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 52:987–998

    Article  PubMed  CAS  Google Scholar 

  12. Oertelt S, Rieger R, Selmi C, Invernizzi P, Ansari AA, Coppel RL, Podda M, Leung PS, Gershwin ME (2007) A sensitive bead assay for antimitochondrial antibodies: chipping away at AMA-negative primary biliary cirrhosis. Hepatology 45:659–665

    Article  PubMed  CAS  Google Scholar 

  13. Kikutani H, Makino S (1992) The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 51:285–322

    Article  PubMed  CAS  Google Scholar 

  14. Chen YG, Scheuplein F, Osborne MA, Tsaih SW, Chapman HD, Serreze DV (2008) Idd9/11 genetic locus regulates diabetogenic activity of CD4 T-cells in nonobese diabetic (NOD) mice. Diabetes 57:3273–3280

    Article  PubMed  CAS  Google Scholar 

  15. Fox CJ, Paterson AD, Mortin-Toth SM, Danska JS (2000) Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis. Am J Hum Genet 67:67–81

    Article  PubMed  CAS  Google Scholar 

  16. Fraser HI, Dendrou CA, Healy B, Rainbow DB, Howlett S, Smink LJ, Gregory S, Steward CA, Todd JA, Peterson LB, Wicker LS (2010) Nonobese diabetic congenic strain analysis of autoimmune diabetes reveals genetic complexity of the Idd18 locus and identifies Vav3 as a candidate gene. J Immunol 184:5075–5084

    Article  PubMed  CAS  Google Scholar 

  17. Aoki CA, Borchers AT, Ridgway WM, Keen CL, Ansari AA, Gershwin ME (2005) NOD mice and autoimmunity. Autoimmun Rev 4:373–379

    Article  PubMed  CAS  Google Scholar 

  18. Koarada S, Wu Y, Fertig N, Sass DA, Nalesnik M, Todd JA, Lyons PA, Fenyk-Melody J, Rainbow DB, Wicker LS, Peterson LB, Ridgway WM (2004) Genetic control of autoimmunity: protection from diabetes, but spontaneous autoimmune biliary disease in a nonobese diabetic congenic strain. J Immunol 173:2315–2323

    PubMed  CAS  Google Scholar 

  19. Irie J, Wu Y, Wicker LS, Rainbow D, Nalesnik MA, Hirsch R, Peterson LB, Leung PS, Cheng C, Mackay IR, Gershwin ME, Ridgway WM (2006) NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 203:1209–1219

    Article  PubMed  CAS  Google Scholar 

  20. Yang GX, Wu Y, Tsukamoto H, Leung PS, Lian ZX, Rainbow DB, Hunter KM, Morris GA, Lyons PA, Peterson LB, Wicker LS, Gershwin ME, Ridgway WM (2011) CD8 T cells mediate direct biliary ductule damage in nonobese diabetic autoimmune biliary disease. J Immunol 186:1259–1267

    Article  PubMed  CAS  Google Scholar 

  21. Oertelt S, Lian ZX, Cheng CM, Chuang YH, Padgett KA, He XS, Ridgway WM, Ansari AA, Coppel RL, Li MO, Flavell RA, Kronenberg M, Mackay IR, Gershwin ME (2006) Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 177:1655–1660

    PubMed  CAS  Google Scholar 

  22. Gorelik L, Flavell RA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181

    Article  PubMed  CAS  Google Scholar 

  23. Taylor AW (2009) Review of the activation of TGF-beta in immunity. J Leukoc Biol 85:29–33

    Article  PubMed  CAS  Google Scholar 

  24. Yoshimura A, Wakabayashi Y, Mori T (2010) Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem 147:781–792

    Article  PubMed  CAS  Google Scholar 

  25. Ebert EC, Panja A, Das KM, Praveen R, Geng X, Rezac C, Bajpai M (2009) Patients with inflammatory bowel disease may have a transforming growth factor-beta-, interleukin (IL)-2- or IL-10-deficient state induced by intrinsic neutralizing antibodies. Clin Exp Immunol 155:65–71

    Article  PubMed  CAS  Google Scholar 

  26. Kel JM, Girard-Madoux MJ, Reizis B, Clausen BE (2010) TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol 185:3248–3255

    Article  PubMed  CAS  Google Scholar 

  27. Perruche S, Zhang P, Maruyama T, Bluestone JA, Saas P, Chen W (2009) Lethal effect of CD3-specific antibody in mice deficient in TGF-beta1 by uncontrolled flu-like syndrome. J Immunol 183:953–961

    Article  PubMed  CAS  Google Scholar 

  28. Yang GX, Lian ZX, Chuang YH, Moritoki Y, Lan RY, Wakabayashi K, Ansari AA, Flavell RA, Ridgway WM, Coppel RL, Tsuneyama K, Mackay IR, Gershwin ME (2008) Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 47:1974–1982

    Article  PubMed  Google Scholar 

  29. Invernizzi P, Crosignani A, Battezzati PM, Covini G, De Valle G, Larghi A, Zuin M, Podda M (1997) Comparison of the clinical features and clinical course of antimitochondrial antibody-positive and -negative primary biliary cirrhosis. Hepatology 25:1090–1095

    Article  PubMed  CAS  Google Scholar 

  30. Kim WR, Poterucha JJ, Jorgensen RA, Batts KP, Homburger HA, Dickson ER, Krom RA, Wiesner RH, Lindor KD (1997) Does antimitochondrial antibody status affect response to treatment in patients with primary biliary cirrhosis? Outcomes of ursodeoxycholic acid therapy and liver transplantation. Hepatology 26:22–26

    Article  PubMed  CAS  Google Scholar 

  31. Moritoki Y, Zhang W, Tsuneyama K, Yoshida K, Wakabayashi K, Yang GX, Bowlus C, Ridgway WM, Ueno Y, Ansari AA, Coppel RL, Mackay IR, Flavell RA, Gershwin ME, Lian ZX (2009) B cells suppress the inflammatory response in a mouse model of primary biliary cirrhosis. Gastroenterology 136:1037–1047

    Article  PubMed  CAS  Google Scholar 

  32. Dhirapong A, Lleo A, Yang GX, Tsuneyama K, Dunn R, Kehry M, Packard TA, Cambier JC, Liu FT, Lindor K, Coppel RL, Ansari AA, Gershwin ME (2011) B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology 53:527–535

    Article  PubMed  CAS  Google Scholar 

  33. Chuang YH, Lian ZX, Tsuneyama K, Chiang BL, Ansari AA, Coppel RL, Gershwin ME (2006) Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun 26:232–240

    Article  PubMed  CAS  Google Scholar 

  34. Chuang YH, Lian ZX, Yang GX, Shu SA, Moritoki Y, Ridgway WM, Ansari AA, Kronenberg M, Flavell RA, Gao B, Gershwin ME (2008) Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 47:571–580

    Article  PubMed  CAS  Google Scholar 

  35. Yoshida K, Yang GX, Zhang W, Tsuda M, Tsuneyama K, Moritoki Y, Ansari AA, Okazaki K, Lian ZX, Coppel RL, Mackay IR, Gershwin ME (2009) Deletion of interleukin-12p40 suppresses autoimmune cholangitis in dominant negative transforming growth factor beta receptor type II mice. Hepatology 50:1494–1500

    Article  PubMed  CAS  Google Scholar 

  36. Nakamura A, Yamazaki K, Suzuki K, Sato S (1997) Increased portal tract infiltration of mast cells and eosinophils in primary biliary cirrhosis. Am J Gastroenterol 92:2245–2249

    PubMed  CAS  Google Scholar 

  37. Lan RY, Cheng C, Lian ZX, Tsuneyama K, Yang GX, Moritoki Y, Chuang YH, Nakamura T, Saito S, Shimoda S, Tanaka A, Bowlus CL, Takano Y, Ansari AA, Coppel RL, Gershwin ME (2006) Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 43:729–737

    Article  PubMed  Google Scholar 

  38. Buckner JH (2010) Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10:849–859

    Article  PubMed  CAS  Google Scholar 

  39. Malek TR, Castro I (2010) Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33:153–165

    Article  PubMed  CAS  Google Scholar 

  40. Aoki CA, Roifman CM, Lian ZX, Bowlus CL, Norman GL, Shoenfeld Y, Mackay IR, Gershwin ME (2006) IL-2 receptor alpha deficiency and features of primary biliary cirrhosis. J Autoimmun 27:50–53

    Article  PubMed  CAS  Google Scholar 

  41. Wakabayashi K, Lian ZX, Moritoki Y, Lan RY, Tsuneyama K, Chuang YH, Yang GX, Ridgway W, Ueno Y, Ansari AA, Coppel RL, Mackay IR, Gershwin ME (2006) IL-2 receptor alpha(−/−) mice and the development of primary biliary cirrhosis. Hepatology 44:1240–1249

    Article  PubMed  CAS  Google Scholar 

  42. Hsu W, Zhang W, Tsuneyama K, Moritoki Y, Ridgway WM, Ansari AA, Coppel RL, Lian ZX, Mackay I, Gershwin ME (2009) Differential mechanisms in the pathogenesis of autoimmune cholangitis versus inflammatory bowel disease in interleukin-2Ralpha(−/−) mice. Hepatology 49:133–140

    Article  PubMed  CAS  Google Scholar 

  43. Long SA, Quan C, Van de Water J, Nantz MH, Kurth MJ, Barsky D, Colvin ME, Lam KS, Coppel RL, Ansari A, Gershwin ME (2001) Immunoreactivity of organic mimeotopes of the E2 component of pyruvate dehydrogenase: connecting xenobiotics with primary biliary cirrhosis. J Immunol 167:2956–2963

    PubMed  CAS  Google Scholar 

  44. Rieger R, Leung PS, Jeddeloh MR, Kurth MJ, Nantz MH, Lam KS, Barsky D, Ansari AA, Coppel RL, Mackay IR, Gershwin ME (2006) Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis. J Autoimmun 27:7–16

    Article  PubMed  CAS  Google Scholar 

  45. Leung PS, Quan C, Park O, Van de Water J, Kurth MJ, Nantz MH, Ansari AA, Coppel RL, Lam KS, Gershwin ME (2003) Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol 170:5326–5332

    PubMed  CAS  Google Scholar 

  46. Wakabayashi K, Lian ZX, Leung PS, Moritoki Y, Tsuneyama K, Kurth MJ, Lam KS, Yoshida K, Yang GX, Hibi T, Ansari AA, Ridgway WM, Coppel RL, Mackay IR, Gershwin ME (2008) Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 48:531–540

    Article  PubMed  CAS  Google Scholar 

  47. Wu SJ, Yang YH, Tsuneyama K, Leung PS, Illarionov P, Gershwin ME, Chuang YH (2011) Innate immunity and primary biliary cirrhosis: Activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology 53:915–925

    Article  PubMed  CAS  Google Scholar 

  48. Lleo A, Invernizzi P, Gao B, Podda M, Gershwin ME (2009) Definition of human autoimmunity–autoantibodies versus autoimmune disease. Autoimmun Rev 9:A259–A266

    Article  PubMed  Google Scholar 

  49. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    PubMed  CAS  Google Scholar 

  50. Padgett KA, Selmi C, Kenny TP, Leung PS, Balkwill DL, Ansari AA, Coppel RL, Gershwin ME (2005) Phylogenetic and immunological definition of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis. J Autoimmun 24:209–219

    Article  PubMed  CAS  Google Scholar 

  51. Brodie EL, DeSantis TZ, Parker JP, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104:299–304

    Article  PubMed  CAS  Google Scholar 

  52. Cavicchioli R, Fegatella F, Ostrowski M, Eguchi M, Gottschal J (1999) Sphingomonads from marine environments. J Ind Microbiol Biotechnol 23:268–272

    Article  PubMed  CAS  Google Scholar 

  53. Kaplan MM (2004) Novosphingobium aromaticivorans: a potential initiator of primary biliary cirrhosis. Am J Gastroenterol 99:2147–2149

    Article  PubMed  Google Scholar 

  54. Olafsson S, Gudjonsson H, Selmi C, Amano K, Invernizzi P, Podda M, Gershwin ME (2004) Antimitochondrial antibodies and reactivity to N. aromaticivorans proteins in Icelandic patients with primary biliary cirrhosis and their relatives. Am J Gastroenterol 99:2143–2146

    Article  PubMed  CAS  Google Scholar 

  55. Selmi C, Balkwill DL, Invernizzi P, Ansari AA, Coppel RL, Podda M, Leung PS, Kenny TP, Van De Water J, Nantz MH, Kurth MJ, Gershwin ME (2003) Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology 38:1250–1257

    Article  PubMed  CAS  Google Scholar 

  56. Kawahara K, Moll H, Knirel YA, Seydel U, Zahringer U (2000) Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur J Biochem 267:1837–1846

    Article  PubMed  CAS  Google Scholar 

  57. Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K (2000) Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 44:563–575

    PubMed  CAS  Google Scholar 

  58. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525

    Article  PubMed  CAS  Google Scholar 

  59. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529

    Article  PubMed  CAS  Google Scholar 

  60. Mattner J, Savage PB, Leung P, Oertelt SS, Wang V, Trivedi O, Scanlon ST, Pendem K, Teyton L, Hart J, Ridgway WM, Wicker LS, Gershwin ME, Bendelac A (2008) Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 3:304–315

    Article  PubMed  CAS  Google Scholar 

  61. Lyons PA, Hancock WW, Denny P, Lord CJ, Hill NJ, Armitage N, Siegmund T, Todd JA, Phillips MS, Hess JF, Chen SL, Fischer PA, Peterson LB, Wicker LS (2000) The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. Immunity 13:107–115

    Article  PubMed  CAS  Google Scholar 

  62. Wicker LS, Leiter EH, Todd JA, Renjilian RJ, Peterson E, Fischer PA, Podolin PL, Zijlstra M, Jaenisch R, Peterson LB (1994) Beta 2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes 43:500–504

    Article  PubMed  CAS  Google Scholar 

  63. Koarada S, Wu Y, Yim YS, Wakeland EW, Ridgway WM (2004) Nonobese diabetic CD4 lymphocytosis maps outside the MHC locus on chromosome 17. Immunogenetics 56:333–337

    Article  PubMed  CAS  Google Scholar 

  64. Podolin PL, Denny P, Armitage N, Lord CJ, Hill NJ, Levy ER, Peterson LB, Todd JA, Wicker LS, Lyons PA (1998) Localization of two insulin-dependent diabetes (Idd) genes to the Idd10 region on mouse chromosome 3. Mamm Genome 9:283–286

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick S. C. Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leung, P.S.C., Yang, G.X., Dhirapong, A., Tsuneyama, K., Ridgway, W.M., Gershwin, M.E. (2012). Animal Models of Primary Biliary Cirrhosis: Materials and Methods. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Biology, vol 900. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-720-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-720-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-719-8

  • Online ISBN: 978-1-60761-720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics