Skip to main content

Advertisement

Log in

Timely Recognition of Cardiovascular Toxicity by Anticancer Agents: A Common Objective of the Pharmacologist, Oncologist and Cardiologist

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Both conventional and new anticancer drugs can frequently cause adverse cardiovascular effects, which can span from subclinical abnormalities to serious life-threatening and sometimes fatal events. This review examines the principal basic and clinical elements that may be of profit to identify, prevent and treat such toxicities. Clearly, the accomplishment of such objectives requires the strong commitment and cooperation of different professional figures including, but not limited to, pharmacologists, oncologists and cardiologists. The aspect of anticancer drug cardiotoxicity seems to be somehow underestimated, mainly due to inadequate reporting of adverse reactions from oncology drugs in the post-marketing setting. Thus, the implementation of pharmacovigilance is indispensable to rapidly and fully assess the safety of newer agents in real-life patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, M. H., Kerkelä, R., & Force, T. (2008). Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation, 118, 84–95.

    Article  PubMed  Google Scholar 

  2. Hauben, M., Reich, L., & Chung, S. (2004). Postmarketing surveillance of potentially fatal reactions to oncology drugs: Potential utility of two signal-detection algorithms. European Journal of Clinical Pharmacology, 60, 747–750.

    Article  PubMed  Google Scholar 

  3. Edwards, B. J., Gounder, M., McKoy, J. M., Boyd, I., Farrugia, M., Migliorati, C., et al. (2008). Pharmacovigilance and reporting oversight in US FDA fast-track process: Bisphosphonates and osteonecrosis of the jaw. The Lancet Oncology, 9, 1166–1172.

    Article  PubMed  Google Scholar 

  4. Seidman, A., Hudis, C., Pierri, M. K., Shak, S., Paton, V., Ashby, M., et al. (2002). Cardiac dysfunction in the trastuzumab clinical trials experience. Journal of Clinical Oncology, 20, 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  5. Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344, 783–792.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao, Y. Y., Sawyer, D. R., Baliga, R. R., Opel, D. J., Han, X., Marchionni, M. A., et al. (1998). Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. Journal of Biological Chemistry, 273, 10261–10269.

    Article  PubMed  CAS  Google Scholar 

  7. Kuramochi, Y., Guo, X., & Sawyer, D. B. (2006). Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. Journal of Molecular and Cellular Cardiology, 41, 228–235.

    Article  PubMed  CAS  Google Scholar 

  8. Okoshi, K., Nakayama, M., Yan, X., Okoshi, M. P., Schuldt, A. J., Marchionni, M. A., et al. (2004). Neuregulins regulate cardiac parasympathetic activity: Muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation, 110, 713–717.

    Article  PubMed  CAS  Google Scholar 

  9. Pegram, M., & Ngo, D. (2006). Application and potential limitations of animal models utilized in the development of trastuzumab (Herceptin): A case study. Advanced Drug Delivery Reviews, 58, 723–734.

    Article  PubMed  CAS  Google Scholar 

  10. Crone, S. A., Zhao, Y. Y., Fan, L., Gu, Y., Minamisawa, S., Liu, Y., et al. (2002). ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Medicine, 8, 459–465.

    Article  PubMed  CAS  Google Scholar 

  11. Ewer, M. S., Vooletich, M. T., Durand, J. B., Woods, M. L., Davis, J. R., Valero, V., et al. (2005). Reversibility of trastuzumab-related cardiotoxicity: New insights based on clinical course and response to medical treatment. Journal of Clinical Oncology, 23, 7820–7826.

    Article  PubMed  CAS  Google Scholar 

  12. de Azambuja, E., Bedard, P. L., Suter, T., & Piccart-Gebhart, M. (2009). Cardiac toxicity with anti-HER-2 therapies-what have we learned so far? Targeted Oncology, 4, 77–88.

    Article  PubMed  Google Scholar 

  13. Guglin, M., Hartlage, G., Reynolds, C., Chen, R., & Patel, V. (2009). Trastuzumab-induced cardiomyopathy: Not as benign as it looks? A retrospective study. Journal of Cardiac Failure, 15, 651–657.

    Article  PubMed  CAS  Google Scholar 

  14. Beauclair, S., Formento, P., Fischel, J. L., Lescaut, W., Largillier, R., Chamorey, E., et al. (2007). Role of the HER2 [Ile655Val] genetic polymorphism in tumorogenesis and in the risk of trastuzumab-related cardiotoxicity. Annals of Oncology, 18, 1335–1341.

    Article  PubMed  CAS  Google Scholar 

  15. Spector, N. L., Yarden, Y., Smith, B., Lyass, L., Trusk, P., Pry, K., et al. (2007). Activation of AMP-activated protein kinase by human EGF receptor 2/EGF receptor tyrosine kinase inhibitor protects cardiac cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 10607–10612.

    Article  PubMed  CAS  Google Scholar 

  16. Kerkelä, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., et al. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 12, 908–916.

    Article  PubMed  CAS  Google Scholar 

  17. Fernández, A., Sanguino, A., Peng, Z., Ozturk, E., Chen, J., Crespo, A., et al. (2007). An anticancer C-kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. Journal of Clinical Investigation, 117, 4044–4054.

    Article  PubMed  CAS  Google Scholar 

  18. Wolf, A., Couttet, P., Dong, M., Grenet, O., Heron, M., Junker, U., et al. (2010). Imatinib does not induce cardiotoxicity at clinically relevant concentrations in preclinical studies. Leukemia research, 34, 1180–1188.

    Article  PubMed  CAS  Google Scholar 

  19. Turrisi, G., Montagnani, F., Grotti, S., Marinozzi, C., Bolognese, L., & Fiorentini, G. (2010). Congestive heart failure during imatinib mesylate treatment. International Journal of Cardiology, 145, 148–150.

    Article  PubMed  Google Scholar 

  20. Trent, J. C., Patel, S. S., Zhang, J., Araujo, D. M., Plana, J. C., Lenihan, D. J., et al. (2010). Rare incidence of congestive heart failure in gastrointestinal stromal tumor and other sarcoma patients receiving imatinib mesylate. Cancer, 116, 184–192.

    PubMed  CAS  Google Scholar 

  21. Johnson, F. M., Agrawal, S., Burris, H., Rosen, L., Dhillon, N., Hong, D., et al. (2010). Phase 1 pharmacokinetic and drug-interaction study of dasatinib in patients with advanced solid tumors. Cancer, 116, 1582–1591.

    Article  PubMed  CAS  Google Scholar 

  22. Chu, T. F., Rupnick, M. A., Kerkela, R., Dallabrida, S. M., Zurakowski, D., Nguyen, L., et al. (2007). Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet, 370, 2011–2019.

    Article  PubMed  CAS  Google Scholar 

  23. Schmidinger, M., Zielinski, C. C., Vogl, U. M., Bojic, A., Bojic, M., Schukro, C., et al. (2008). Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 26, 5204–5212.

    Article  PubMed  Google Scholar 

  24. Di Lorenzo, G., Autorino, R., Bruni, G., Cartenì, G., Ricevuto, E., Tudini, M., et al. (2009). Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: A multicenter analysis. Annals of Oncology, 20, 1535–1542.

    Article  PubMed  CAS  Google Scholar 

  25. Torino, F., Torino, F., Corsello, S. M., Longo, R., Barnabei, A., & Gasparini, G. (2009). Hypothyroidism related to tyrosine kinase inhibitors: An emerging toxic effect of targeted therapy. Nature Reviews Clinical Oncology, 6, 219–229.

    Article  PubMed  CAS  Google Scholar 

  26. Hasinoff, B. B., Patel, D., & O’Hara, K. A. (2008). Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Molecular Pharmacology, 74, 1722–1728.

    Article  PubMed  CAS  Google Scholar 

  27. Pandit, B., Sarkozy, A., Pennacchio, L. A., Carta, C., Oishi, K., Martinelli, S., et al. (2007). Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 39, 1007–1012.

    Article  PubMed  CAS  Google Scholar 

  28. Hasinoff, N. B., & Patel, D. (2010). Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovascular Toxicology, 10, 1–8.

    Article  PubMed  CAS  Google Scholar 

  29. Motzer, R. J., & Molina, A. M. (2009). Targeting renal cell carcinoma. Journal of Clinical Oncology, 27, 3312–3318.

    Article  CAS  Google Scholar 

  30. Halimi, J. M., Azizi, M., Bobrie, G., Bouché, O., Deray, G., des Guetz, G., et al. (2008). Effets vasculaires et rénaux des médicaments anti-angiogéniques: Recommandations françaises pour la pratique (SN, SFHTA, APNET, FFCD). Néphrologie and Thérapeutique, 4, 602–615.

    Article  Google Scholar 

  31. Ranpura, V., Pulipati, B., Chu, D., Zhu, X., & Wu, S. (2010). Increased risk of high-grade hypertension with bevacizumab in cancer patients: A meta-analysis. American Journal of Hypertension, 23, 460–468.

    Article  PubMed  CAS  Google Scholar 

  32. Scartozzi, M., Galizia, E., Chiorrini, S., Giampieri, R., Berardi, R., Pierantoni, C., et al. (2009). Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Annals of Oncology, 20, 227–230.

    Article  PubMed  CAS  Google Scholar 

  33. D’Adamo, D. R., Anderson, S. E., Albritton, K., Yamada, J., Riedel, E., Scheu, K., et al. (2005). Phase II study of doxorubicin and bevacizumab for patients with metastatic soft-tissue sarcomas. Journal of Clinical Oncology, 23, 7135–7142.

    Article  PubMed  CAS  Google Scholar 

  34. Ferroni, P., Formica, V., Roselli, M., & Guadagni, F. (2010). Thromboembolic events in patients treated with anti-angiogenic drugs. Current Vascular Pharmacology, 8, 102–113.

    Article  PubMed  CAS  Google Scholar 

  35. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350, 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  36. Kabbinavar, F. F., Schulz, J., McCleod, M., Patel, T., Hamm, J. T., Hecht, J. R., et al. (2005). Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: Results of a randomized phase II trial. Journal of Clinical Oncology, 23, 3697–3705.

    Article  PubMed  CAS  Google Scholar 

  37. Nalluri, S. R., Chu, D., Keresztes, R., Zhu, X., & Wu, S. (2008). Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis. JAMA, 300, 2277–2285.

    Article  PubMed  CAS  Google Scholar 

  38. Gieseler, F. (2008). Pathophysiological considerations to thrombophilia in the treatment of multiple myeloma with thalidomide and derivates. Thrombosis and Haemostasis, 99, 1001–1007.

    PubMed  CAS  Google Scholar 

  39. Menon, S. P., Rajkumar, S. V., Lacy, M., Falco, P., & Palumbo, A. (2008). Thromboembolic events with lenalidomide-based therapy for multiple myeloma. Cancer, 112, 1522–1528.

    Article  PubMed  CAS  Google Scholar 

  40. Sandler, A. B., Schiller, J. H., Gray, R., Dimery, I., Brahmer, J., Samant, M., et al. (2009). Johnson D.H.Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable non-small-cell lung cancer treated with carboplatin and paclitaxel plus bevacizumab. Journal of Clinical Oncology, 27, 1405–1412.

    Article  PubMed  CAS  Google Scholar 

  41. Boehm, S., Rothermundt, C., Hess, D., & Joerger, M. (2010). Antiangiogenic drugs in oncology: A focus on drug safety and the elderly-A mini-review. Gerontology, 56, 303–309.

    Article  PubMed  CAS  Google Scholar 

  42. Barbey, J. T., Pezzullo, J. C., & Soignet, S. L. (2003). Effect of arsenic trioxide on QT interval in patients with advanced malignancies. Journal of Clinical Oncology, 21(19), 3609–3615.

    Article  PubMed  CAS  Google Scholar 

  43. Strevel, E. L., Ing, D. J., & Siu, L. L. (2007). Molecularly targeted oncology therapeutics and prolongation of the QT interval. Journal of Clinical Oncology, 25, 3362–3371.

    Article  PubMed  CAS  Google Scholar 

  44. Curigliano, G., Spitaleri, G., Fingert, H. J., de Braud, F., Sessa, C., Loh, E., et al. (2008). Drug-induced QTc interval prolongation: A proposal towards an efficient and safe anticancer drug development. European Journal of Cancer, 44, 494–500.

    Article  PubMed  CAS  Google Scholar 

  45. van Heeckeren, W. J., Bhakta, S., Ortiz, J., Duerk, J., Cooney, M. M., Dowlati, A., et al. (2006). Promise of new vascular-disrupting agents balanced with cardiac toxicity: Is it time for oncologists to get to know their cardiologists? Journal of Clinical Oncology, 24, 1485–1488.

    Article  PubMed  CAS  Google Scholar 

  46. Pai, V. B., & Nahata, M. C. (2000). Cardiotoxicity of chemotherapeutic agents. Incidence, treatment and prevention. Drug Safety, 22, 263–302.

    Article  PubMed  CAS  Google Scholar 

  47. Belham, M., Kruger, A., Mepham, S., Faganello, G., & Pritchard, C. (2007). Monitoring left ventricular function in adults receiving anthracycline-containing chemotherapy. European Journal of Heart Failure, 9, 409–414.

    Article  PubMed  CAS  Google Scholar 

  48. Jurcut, R., Wildiers, H., Ganame, J., D’hooge, J., Paridaens, R., & Voigt, J. U. (2008). Detection and monitoring of cardiotoxicity—what does modern cardiology offer? Supportive Care in Cancer, 16, 437–445.

    Article  PubMed  Google Scholar 

  49. Rowinsky, E. K., McGuire, W. P., Guarnieri, T., Fisherman, J. S., Christian, M. C., & Donehower, R. C. (1991). Cardiac disturbances during the administration of Taxol. Journal of Clinical Oncology, 9, 1704–1712.

    PubMed  CAS  Google Scholar 

  50. Wortman, J. E., Lucas, V. S., Schuster, E., Thiele, D., & Logue, G. L. (1979). Sudden death during doxorubicin administration. Cancer, 44, 1588–1591.

    Article  PubMed  CAS  Google Scholar 

  51. Menard, O., Martinet, Y., & Lamy, P. (1991). Cisplatin-induced atrial fibrillation. Journal of Clinical Oncology, 9, 192–193.

    PubMed  CAS  Google Scholar 

  52. Rezkalla, S., Kloner, R. A., Ensley, J., al-Sarraf, M., Revels, S., Olivenstein, A., et al. (1989). Continuous ambulatory ECG monitoring during fluorouracil therapy: A prospective study. Journal of Clinical Oncology, 7, 509–514.

    PubMed  CAS  Google Scholar 

  53. van der Hooft, C. S., Heeringa, J., van Herpen, G., Kors, J. A., Kingma, J. H., & Stricker, B. H. (2004). Drug-induced atrial fibrillation. Journal of the American College of Cardiology, 44, 2117–2124.

    Article  PubMed  CAS  Google Scholar 

  54. Horacek, J. M., Jakl, M., Horackova, J., Pudil, R., Jebavy, L., & Maly, J. (2009). Assessment of anthracycline-induced cardiotoxicity with electrocardiography. Experimental Oncology, 31, 115–117.

    PubMed  CAS  Google Scholar 

  55. Torti, F. M., Bristow, M. M., Lum, B. L., Carter, S. K., Howes, A. E., Aston, D. A., et al. (1986). Cardiotoxicity of epirubicin and doxorubicin: Assessment by endomyocardial biopsy. Cancer Research, 46, 3722–3727.

    PubMed  CAS  Google Scholar 

  56. Piver, M. S., Marchetti, D. L., Parthasarathy, K. L., Bakshi, S., & Reese, P. (1985). Doxorubicin hydrochloride (Adriamycin) cardiotoxicity evaluated by sequential radionuclide angiocardiography. Cancer, 56, 76–80.

    Article  PubMed  CAS  Google Scholar 

  57. Schwartz, R., & Zaret, B. (1992). Diagnosis and treatment of drug induced myocardial disease. In F. C. Muggia & J. L. Speyer (Eds.), Cardiotoxicity of anticancer therapy (1st ed., pp. 173–197). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  58. Palmeri, S. T., Bonow, R. O., Myers, C. E., Seipp, C., Jenkins, J., Green, M. V., et al. (1986). Prospective evaluation of doxorubicin cardiotoxicity by rest and exercise radionuclide angiography. American Journal of Cardiology, 58, 607–613.

    Article  PubMed  CAS  Google Scholar 

  59. Nousiainen, T., Vanninen, E., Jantunen, E., Remes, J., Kuikka, J., & Hartikainen, J. (2001). Anthracycline-induced cardiomyopathy: Long-term effects on myocardial cell integrity, cardiac adrenergic innervation and fatty acid uptake. Clinical Physiology, 21, 123–128.

    Article  PubMed  CAS  Google Scholar 

  60. Valdés Olmos, R. A., ten Bokkel Huinink, W. W., ten Hoeve, R. F., van Tinteren, H., Bruning, P. F., van Vlies, B., et al. (1995). Assessment of anthracyclines-related myocardial adrenergic derangement by [123I]Metaiodobenzylguanidine scintigraphy. European Journal of Cancer, 31, 23–31.

    Google Scholar 

  61. Folland, E. D., & Parisi, A. F. (1979). Noninvasive evaluation of left ventricular function: The ejection fraction. Comprehensive Therapy, 5, 47–54.

    PubMed  CAS  Google Scholar 

  62. Messina, L., Palmeri, S., Bonnì, G., D’Alessandro, N., Rausa, L., & Raineri, A. (1981). Serial echocardiographic evaluation of subjects treated with adriamycin. Bollettino della Società italiana di cardiologia, 26, 2231–2237.

    PubMed  CAS  Google Scholar 

  63. Hutter, J. J., Sahn, D. J., Woolfenden, J. M., & Carnahan, Y. (1981). Evaluation of the cardiac effects of doxorubicin by serial echocardiography. American Journal of Diseases of Children, 135, 653–657.

    PubMed  Google Scholar 

  64. Jassal, D. S., Han, S. Y., Hans, C., Sharma, A., Fang, T., Ahmadie, R., et al. (2009). Utility of tissue Doppler and strain rate imaging in the early detection of trastuzumab and anthracycline mediated cardiomyopathy. Journal of the American Society of Echocardiography, 22, 418–424.

    Article  PubMed  Google Scholar 

  65. Nagy, A. C., Cserép, Z., Tolnay, E., Nagykálnai, T., & Forster, T. (2008). Early diagnosis of chemotherapy-induced cardiomyopathy: A prospective tissue Doppler imaging study. Pathology oncology research, 14, 69–77.

    Article  PubMed  Google Scholar 

  66. Tei, C. (1995). New non-invasive index for combined systolic and diastolic ventricular function. Journal of Cardiology, 26, 135–136.

    PubMed  CAS  Google Scholar 

  67. Hill, J. C., & Palma, R. A. (2005). Doppler tissue imaging for the assessment of left ventricular diastolic function: A systematic approach for the sonographer. Journal of the American Society of Echocardiography, 18, 80–90.

    Article  PubMed  Google Scholar 

  68. Quinones, M. A., Otto, C. M., & Stoddard, M. F. (2002). Recommendations for quantification of Doppler echocardiography: A report from the Doppler quantification task force of the nomenclature and standards committee of the American society of echocardiography. Journal of the American Society of Echocardiography, 15, 167–184.

    Article  PubMed  Google Scholar 

  69. Yuasa, T., Otsuji, Y., Kuwahara, E., Takasaki, K., Yoshifuku, S., Yuge, K., et al. (2005). Non-invasive prediction of complications with anteroseptal acute myocardial infarction by left ventricular Tei index. Journal of the American Society of Echocardiography, 18, 20–25.

    Article  PubMed  Google Scholar 

  70. Dodos, F., Halbsguth, T., Erdmann, E., & Hoppe, U. C. (2008). Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clinical Research Cardiology, 97, 318–326.

    Article  Google Scholar 

  71. Senju, N., Ikeda, S., Koga, S., Miyahara, Y., Tsukasaki, K., Tomonaga, M., et al. (2007). The echocardiographic Tei-index reflects early myocardial damage induced by anthracyclines in patients with hematological malignancies. Heart and Vessels, 22, 393–397.

    Article  PubMed  Google Scholar 

  72. Rohde, L. E., Baldi, A., Weber, C., Geib, G., Mazzotti, N. G., Fiorentini, M., et al. (2007). Tei index in adult patients submitted to adriamycin chemotherapy: Failure to predict early systolic dysfunction. Diagnosis of adriamycin cardiotoxicity. International Journal of Cardiovascular Imaging, 23, 185–191.

    Article  PubMed  Google Scholar 

  73. Jurcut, R., Wildiers, H., Ganame, J., D’hooge, J., De Backer, J., Denys, H., et al. (2008). Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. Journal of the American Society of Echocardiography, 21, 1283–1289.

    Article  PubMed  Google Scholar 

  74. Piegari, E., Di Salvo, G., Castaldi, B., Vitelli, M. R., Rodolico, G., Golino, P., et al. (2008). Myocardial strain analysis in a doxorubicin-induced cardiomyopathy model. Ultrasound Medicine and Biology, 34, 370–378.

    Article  Google Scholar 

  75. Hare, J. L., Brown, J. K., Leano, R., Jenkins, C., Woodward, N., Marwick, & T.,H. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. American Heart Journal, 2009, 158:294–301.

    Google Scholar 

  76. Galderisi, M., Marra, F., Esposito, R., Lomoriello, V.S., Pardo, M., & de Divitiis, O. Cancer therapy and cardiotoxicity: The need of serial Doppler echocardiography. Cardiovascular Ultrasound, 2007, 5:4.

    Google Scholar 

  77. Jarfelt, M., Kujacic, V., Holmgren, D., Bjarnason, R., & Lannering, B. (2007). Exercise echocardiography reveals subclinical cardiac dysfunction in young adult survivors of childhood acute lymphoblastic leukemia. Pediatric Blood and Cancer, 49, 835–840.

    Article  PubMed  CAS  Google Scholar 

  78. Senior, R., & Lahiri, A. (2001). Role of dobutamine echocardiography in detection of myocardial viability for predicting outcome after revascularization in ischemic cardiomyopathy. Journal of the American Society of Echocardiography, 14, 240–248.

    Article  PubMed  CAS  Google Scholar 

  79. Civelli, M., Cardinale, D., Martinoni, A., Lamantia, G., Colombo, N., Colombo, A., et al. (2006). Early reduction in left ventricular contractile reserve detected by dobutamine stress echo predicts high-dose chemotherapy-induced cardiac toxicity. International Journal of Cardiology, 111, 120–126.

    Article  PubMed  Google Scholar 

  80. Klewer, S. E., Goldberg, S. J., Donnerstein, R. L., Berg, R. A., & Hutter, J. J., Jr. (1992). Dobutamine stress echocardiography: A sensitive indicator of diminished myocardial function in asymptomatic doxorubicin-treated long-term survivors of childhood cancer. Journal of the American College of Cardiology, 19, 394–401.

    Article  PubMed  CAS  Google Scholar 

  81. Lanzarini, L., Bossi, G., Laudisa, M. L., Klersy, C., & Arico, M. (2000). Lack of clinically significant cardiac dysfunction during intermediate dobutamine doses in long-term childhood cancer survivors exposed to anthracyclines. American Heart Journal, 140, 315–323.

    Article  PubMed  CAS  Google Scholar 

  82. Bountioukos, M., Doorduijn, J. K., Roelandt, J. R., Vourvouri, E. C., Bax, J. J., Schinkel, A. F., et al. (2003). Repetitive dobutamine stress echocardiography for the prediction of anthracycline cardiotoxicity. European Journal of Echocardiography, 4, 300–305.

    Article  PubMed  CAS  Google Scholar 

  83. Hamada, H., Ohkubo, T., Maeda, M., & Ogawa, S. (2006). Evaluation of cardiac reserved function by high-dose dobutamine-stress echocardiography in asymptomatic anthracycline-treated survivors of childhood cancer. Pediatrics International, 48, 313–320.

    Article  PubMed  CAS  Google Scholar 

  84. Wu, K. C., Zerhouni, E. A., Judd, R. M., Lugo-Olivieri, C. H., Barouch, L. A., Schulman, S. P., et al. (1998). Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation, 97, 765–772.

    PubMed  CAS  Google Scholar 

  85. Friedrich, M. G., Strohm, O., Schulz-Menger, J., Marciniak, H., Luft, F. C., & Dietz, R. (1998). Contrast media–enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation, 97, 1802–1809.

    PubMed  CAS  Google Scholar 

  86. Wassmuth, R., Hauser, I. A., Schuler, K., Schulz-Menger, J., Doerken, B., Dietz, R., et al. (2001). Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging-A pilot study. American Heart Journal, 141, 1007–1013.

    Article  PubMed  CAS  Google Scholar 

  87. Hoffmann, R., von Bardeleben, S., Kasprzak, J. D., Borges, A. C., ten Cate, F., Firschke, C., et al. (2006). Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging and unenhanced and contrast enhanced echocardiography A multicenter comparison of methods. Journal of the American College of Cardiology, 47, 121–128.

    Article  PubMed  Google Scholar 

  88. Fallah-Rad, N., Lytwyn, M., Fang, T., Kirkpatrick, I., & Jassal, D.S. Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy Journal of cardiovascular magnetic resonance,. 2008,10:5.

    Google Scholar 

  89. Francis, G. S., Benedict, C., Johnstone, D. E., Kirlin, P. C., Nicklas, J., Liang, C. S., et al. (1990). Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. Circulation, 82, 1724–1729.

    Article  PubMed  CAS  Google Scholar 

  90. Schmitt, K., Tulzer, G., Merl, M., Aichhorn, G., Grillenberger, A., Wiesinger, G., et al. (1995). Early detection of doxorubicin and daunorubicin cardiotoxicity by echocardiography: Diastolic vs systolic parameters. European Journal of Pediatrics, 154, 201–204.

    Article  PubMed  CAS  Google Scholar 

  91. Neri, B., De Scalzi, M., De Leonardis, V., Gemelli, M. T., Ghezzi, P., & Pacini, P. (1991). Preliminary study on behaviour of atrial natriuretic factor in anthracycline-related cardiac toxicity. International Journal of Clinical Pharmacy and Research, 11, 75–81.

    CAS  Google Scholar 

  92. Bauch, M., Ester, A., Kimura, B., Victoria, B. E., Kedar, A., & Phillips, M. I. (1992). Atrial natriuretic peptide as a marker for doxorubicin induced cardiotoxic effects. Cancer, 69, 1492–1497.

    Article  PubMed  CAS  Google Scholar 

  93. Sundby Hall, K., Wiklund, T., Erikstein, B., Holte, H., Kvalheim, G., Heen Sommer, H., et al. (2001). Effects of dose-intensive chemotherapy and radiotherapy on serum n-terminal proatrial natriuretic peptide in high-risk breast cancer patients. Breast Cancer Research Treatment, 67, 235–244.

    Article  Google Scholar 

  94. Hall, K. S., Wiklund, T., Erikstein, B., Holte, H., Kvalheim, G., Sommer, H. H., Andersen, A., Skovlund, E., Bergh J., & Hall, C. Effects of dose-intensive chemotherapy and radiotherapy on serum n-terminal proatrial natriuretic peptide in high-risk breast cancer patients. Breast Cancer Research Treatment, 2001, 67,235–44.

  95. Dolci, A., Dominici, R., Cardinale, D., Sandri, M. T., & Panteghini, M. (2008). Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: Systematic review of the literature and recommendations for use. American Journal of Clinical Pathology, 130, 688–695.

    Article  PubMed  CAS  Google Scholar 

  96. Knobloch, K., Tepe, J., Lichtinghagen, R., Luck, H. J., & Vogt, P. M. (2008). Simultaneous hemodynamic and serological cardiotoxicity monitoring during immunotherapy with trastuzumab. International Journal of Cardiology, 125, 113–115.

    Article  PubMed  CAS  Google Scholar 

  97. Gaze, D. C., & Collinson, P. O. (2005). Cardiac troponins as biomarkers of drug- and toxin-induced cardiac toxicity and cardioprotection. Expert opinion on drug metabolism and toxicology, 1, 715–725.

    Article  PubMed  CAS  Google Scholar 

  98. Horacek, J. M., Pudil, R., Tichy, M., Jebavy, L., Strasova, A., Ulrychova, M., et al. (2008). Cardiac troponin I seems to be superior to cardiac troponin T in the early detection of cardiac injury associated with anthracycline treatment. Onkologie, 31, 511–512.

    Article  Google Scholar 

  99. Cardinale, D., Colombo, A., Torrisi, R., Sandri, M. T., Civelli, M., Salvatici, M., et al. (2010). Trastuzumab-induced cardiotoxicity: Clinical and prognostic implications of troponin I evaluation. Journal of Clinical Oncology, 28, 3901–3904.

    Article  CAS  Google Scholar 

  100. Yamashita, J., Ogawa, M., & Shirakusa, T. (1995). Plasma endothelin-1 as a marker for doxorubicin cardiotoxicity. International Journal of Cancer, 62, 542–547.

    Article  CAS  Google Scholar 

  101. Zsáry, A., Szûcs, S., Keltai, K., Schneider, T., Rosta, A., Sármán, P., et al. (2004). Endothelins: A possible mechanism of cytostatics-induced cardiomyopathy. Leuk. Lymphom., 45, 351–355.

    Article  CAS  Google Scholar 

  102. Bien, S., Riad, A., Ritter, C. A., Gratz, M., Olshausen, F., Westermann, D., Grube, M., Krieg, T., Ciecholewski, S., Felix, S. B., Staudt, A., Schultheiss, H. P., Ewert, R., Völker, U., Tschöpe, & C., Kroemer, H.K. The endothelin receptor blocker bosentan inhibits doxorubicin-induced cardiomyopathy. Cancer Research, 2007, 10428–35.

  103. Miyagawa, K., Emoto, N., Widyantoro, B., Nakayama, K., Yagi, K., Rikitake, Y., et al. (2010). Attenuation of Doxorubicin-induced cardiomyopathy by endothelin-converting enzyme-1 ablation through prevention of mitochondrial biogenesis impairment. Hypertension, 55, 738–746.

    Article  PubMed  CAS  Google Scholar 

  104. Bristow, M. R., & Long, C. S. (2002). Cardiotrophin-1 in heart failure: Editorial. Circulation, 106, 1430–1432.

    Article  PubMed  Google Scholar 

  105. Calabrò, P., Limongelli, G., Riegler, L., Maddaloni, V., Calmieri, R., Golia, E., et al. (2009). Novel insights into the role of cardiotrophin-1 in cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 46, 142–148.

    Article  PubMed  CAS  Google Scholar 

  106. Arimoto, T., Takeishi, Y., Shiga, R., Fukui, A., Tachibana, H., Nozaki, N., et al. (2005). Prognostic value of elevated circulating heart-type fatty acid binding protein in patients with congestive heart failure. Journal of Cardiac Failure, 11, 56–60.

    Article  PubMed  CAS  Google Scholar 

  107. Li, Y. M., Guo, Y. P., & Liu, Y. (2010). Cancer chemotherapy induces cardiotoxicity by targeting cardiac stem cells. Journal of cellular and molecular medicine, 14(11), 2630–2632.

    Article  PubMed  Google Scholar 

  108. De Angelis, A., Piegari, E., Cappetta, D., Marino, L., Filippelli, A., Berrino, L., et al. (2010). Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation, 121(2), 276–292.

    Article  PubMed  CAS  Google Scholar 

  109. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7, 430–436.

    Article  PubMed  CAS  Google Scholar 

  110. Nishikawa, S., Goldstein, R. A., & Nierras, C. R. (2008). The promise of human induced pluripotent stem cells for research and therapy. Nature Reviews. Molecular Cell Biology, 9, 725–729.

    Article  PubMed  CAS  Google Scholar 

  111. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction with iPS induced by human stemness factors. Circulation, 120(5), 408–416.

    Article  PubMed  Google Scholar 

  112. Colombo, S., Soranzo, N., Rotger, M., Sprenger, R., & Bleiber, G. (2005). Furrer H.l. Influence of ABCB1, ABCC1, ABCC2, and ABCG2 haplotypes on the cellular exposure of nelfinavir in vivo. Pharmacogenet Genomics, 15, 599–608.

    Article  PubMed  CAS  Google Scholar 

  113. Fredj, S., Lindegger, N., Sampson, K. J., Carmeliet, P., & Kass, R. S. (2006). Altered Na+ channels promote pause-induced spontaneous diastolic activity in long QT syndrome type 3 myocytes. Circulation Research, 99, 1225–1232.

    Article  PubMed  CAS  Google Scholar 

  114. Noord, C., EiJgeselsheim, M., & Stricker, B. H. (2010). Drug- and non-drug-associated QT interval prolongation. British Journal of Clinical Pharmacology, 70, 16–23.

    Article  PubMed  CAS  Google Scholar 

  115. Ewer, M. S., & Ewer, S. M. (2010). Cardiotoxicity of anticancer treatments: What the cardiologist needs to know. Nature Reviews Cardiology, 7(10), 564–575.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Bonura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonura, F., Di Lisi, D., Novo, S. et al. Timely Recognition of Cardiovascular Toxicity by Anticancer Agents: A Common Objective of the Pharmacologist, Oncologist and Cardiologist. Cardiovasc Toxicol 12, 93–107 (2012). https://doi.org/10.1007/s12012-011-9141-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-011-9141-z

Keywords

Navigation