Skip to main content

Advertisement

Log in

The Association Between Dietary Magnesium Intake with Chronic Obstructive Pulmonary Disease and Lung Function in US Population: a Cross-sectional Study

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is now considered among the top three contributors to mortality globally. There is limited understanding surrounding the contribution of magnesium to the progression of COPD. This survey aims to evaluate the connection between dietary magnesium intake and both lung function and COPD prevalence among the US population. The research comprised 4865 participants in the National Health and Nutrition Examination Survey (NHANES) program conducted from 2007 to 2012. To evaluate the association between dietary magnesium intake and lung function as well as COPD, the study conducted multiple regression analyses, stratified analyses, and smoothed curves. In this study, we explored the relationship between higher magnesium intake and higher FEV1 [β = 0.21 (95% CI 0.12, 0.30)] and FVC [β = 0.25 (95% CI 0.14, 0.36)] after accounting for all potential confounding factors. We demonstrated a relationship between increased magnesium intake and reduced odds of developing COPD [OR = 0.9993 (95% CI 0.9987, 1.0000)]. The results of stratified analyses further indicated that the relationship between magnesium intake and the risk of COPD is more pronounced in the 40–60 age group and males. The study demonstrated positive associations between the intake of dietary magnesium and both FEV1 and FVC. Additionally, an adverse relationship between magnesium intake and the prevalence of COPD was also observed, suggesting that supplementation with magnesium may be a practical approach to preventing and managing COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available at https://www.cdc.gov/nchs/nhanes/about_nhanes.htm.

Abbreviations

COPD :

chronic obstructive pulmonary disease

NHANES :

National Health and Nutrition Examination Survey

FVC :

forced vital capacity

FEV 1 :

forced expiratory volume in the first second

BMI :

body mass index

OR :

odds ratio

References

  1. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstruction Lung Disease (GOLD). 2023. http://www.goldcopd.org. Accessed 17 October 2023

  2. Liu H, Tan X, Liu Z, Ma X, Zheng Y, Zhu B, Zheng G, Hu Y, Fang L, Hong G (2021) Association between diet-related inflammation and COPD: findings from NHANES III. Front Nutr 8:732099. https://doi.org/10.3389/fnut.2021.732099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scoditti E, Massaro M, Garbarino S, Toraldo DM (2019) Role of diet in chronic obstructive pulmonary disease prevention and treatment. Nutrients 11(6). https://doi.org/10.3390/nu11061357

  4. Romieu I, Trenga C (2001) Diet and obstructive lung diseases. Epidemiol Rev 23(2):268–287. https://doi.org/10.1093/oxfordjournals.epirev.a000806

    Article  CAS  PubMed  Google Scholar 

  5. Kim T, Choi H, Kim J (2020) Association between dietary nutrient intake and chronic obstructive pulmonary disease severity: a nationwide population-based representative sample. Copd 17(1):49–58. https://doi.org/10.1080/15412555.2019.1698530

    Article  PubMed  Google Scholar 

  6. Smit HA, Grievink L, Tabak C (1999) Dietary influences on chronic obstructive lung disease and asthma: a review of the epidemiological evidence. Proc Nutr Soc 58(2):309–319. https://doi.org/10.1017/s0029665199000427

    Article  CAS  PubMed  Google Scholar 

  7. King DA, Cordova F, Scharf SM (2008) Nutritional aspects of chronic obstructive pulmonary disease. Proc Am Thorac Soc 5(4):519–523. https://doi.org/10.1513/pats.200707-092ET

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46. https://doi.org/10.1152/physrev.00012.2014

    Article  CAS  PubMed  Google Scholar 

  9. Tarleton EK (2018) Factors influencing magnesium consumption among adults in the United States. Nutr Rev 76(7):526–538. https://doi.org/10.1093/nutrit/nuy002

    Article  PubMed  Google Scholar 

  10. Gourgoulianis KI, Chatziparasidis G, Chatziefthimiou A, Molyvdas PA (2001) Magnesium as a relaxing factor of airway smooth muscles. J Aerosol Med 14(3):301–307. https://doi.org/10.1089/089426801316970259

    Article  CAS  PubMed  Google Scholar 

  11. Altura BM, Gebrewold A, Zhang A, Altura BT (2003) Low extracellular magnesium ions induce lipid peroxidation and activation of nuclear factor-kappa B in canine cerebral vascular smooth muscle: possible relation to traumatic brain injury and strokes. Neurosci Lett 341(3):189–192. https://doi.org/10.1016/s0304-3940(03)00134-4

    Article  CAS  PubMed  Google Scholar 

  12. Al Alawi AM, Majoni SW, Falhammar H (2018) Magnesium and human health: perspectives and research directions. Int J Endocrinol 2018:9041694. https://doi.org/10.1155/2018/9041694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Datta PK, Aravindan A, Nath S, Chowdhury SR, Dutta D (2023) Nebulised magnesium sulphate as an adjuvant to the treatment of acute exacerbation of COPD: a systematic review and meta-analysis of randomised controlled trials with trial sequential analysis. Lung India 40(4):339–348. https://doi.org/10.4103/lungindia.lungindia_473_22

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weglicki WB, Mak IT, Phillips TM (1994) Blockade of cardiac inflammation in Mg2+ deficiency by substance P receptor inhibition. Circ Res 74(5):1009–1013. https://doi.org/10.1161/01.res.74.5.1009

    Article  CAS  PubMed  Google Scholar 

  15. Shahi A, Aslani S, Ataollahi M, Mahmoudi M (2019) The role of magnesium in different inflammatory diseases. Inflammopharmacology 27(4):649–661. https://doi.org/10.1007/s10787-019-00603-7

    Article  PubMed  Google Scholar 

  16. Britton J, Pavord I, Richards K, Wisniewski A, Knox A, Lewis S, Tattersfield A, Weiss S (1994) Dietary magnesium, lung function, wheezing, and airway hyperreactivity in a random adult population sample. Lancet 344(8919):357–362. https://doi.org/10.1016/s0140-6736(94)91399-4

    Article  CAS  PubMed  Google Scholar 

  17. Gilliland FD, Berhane KT, Li YF, Kim DH, Margolis HG (2002) Dietary magnesium, potassium, sodium, and children's lung function. Am J Epidemiol 155(2):125–131. https://doi.org/10.1093/aje/155.2.125

    Article  PubMed  Google Scholar 

  18. Leng S, Picchi MA, Tesfaigzi Y, Wu G, Gauderman WJ, Xu F, Gilliland FD, Belinsky SA (2017) Dietary nutrients associated with preservation of lung function in Hispanic and non-Hispanic white smokers from New Mexico. Int J Chron Obstruct Pulmon Dis 12:3171–3181. https://doi.org/10.2147/copd.S142237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Butland BK, Fehily AM, Elwood PC (2000) Diet, lung function, and lung function decline in a cohort of 2512 middle aged men. Thorax 55(2):102–108. https://doi.org/10.1136/thorax.55.2.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahmadi A, Eftekhari MH, Mazloom Z, Masoompour M, Fararooei M, Zare M, Hejazi N (2022) Health-eelated quality of life and nutritional status are related to dietary magnesium intake in chronic obstructive pulmonary disease: a cross-sectional study. Clin Nutr Res 11(1):62–73. https://doi.org/10.7762/cnr.2022.11.1.62

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zanforlini BM, Ceolin C, Trevisan C, Alessi A, Seccia DM, Noale M, Maggi S, Guarnieri G, Vianello A, Sergi G (2022) Clinical trial on the effects of oral magnesium supplementation in stable-phase COPD patients. Aging Clin Exp Res 34(1):167–174. https://doi.org/10.1007/s40520-021-01921-z

    Article  PubMed  Google Scholar 

  22. Centers for Disease Control and Prevention (CDC) National Center for Health Statistics (NCHS) National Health and Nutrition Examination Survey Questionnaire (or Examination Protocol, or Laboratory Protocol) U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; Hyattsville, MD, USA. https://www.cdc.gov/nchs/nhanes/index.htm. Accessed 17 October 2023

  23. Måhlin C, von Sydow H, Osmancevic A, Emtner M, Grönberg AM, Larsson S, Slinde F (2014) Vitamin D status and dietary intake in a Swedish COPD population. Clin Respir J 8(1):24–32. https://doi.org/10.1111/crj.12030

    Article  CAS  PubMed  Google Scholar 

  24. Ghalibaf MHE, Kianian F, Beigoli S, Behrouz S, Marefati N, Boskabady M, Boskabady MH (2023) The effects of vitamin C on respiratory, allergic and immunological diseases: an experimental and clinical-based review. Inflammopharmacology 31(2):653–672. https://doi.org/10.1007/s10787-023-01169-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Park HJ, Byun MK, Kim HJ, Kim JY, Kim YI, Yoo KH, Chun EM, Jung JY, Lee SH, Ahn CM (2016) Dietary vitamin C intake protects against COPD: the Korea National Health and Nutrition Examination Survey in 2012. Int J Chron Obstruct Pulmon Dis 11:2721–2728. https://doi.org/10.2147/copd.S119448

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lei T, Lu T, Yu H, Su X, Zhang C, Zhu L, Yang K, Liu J (2022) Efficacy of vitamin C supplementation on chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 17:2201–2216. https://doi.org/10.2147/copd.S368645

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Wang J, Chen L, Zhang H, Yu L, Chi Y, Chen M, Cai Y (2022) Efficacy of vitamin D supplementation on COPD and asthma control: a systematic review and meta-analysis. J Glob Health 12:04100. https://doi.org/10.7189/jogh.12.04100

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahmad S, Arora S, Khan S, Mohsin M, Mohan A, Manda K, Syed MA (2021) Vitamin D and its therapeutic relevance in pulmonary diseases. J Nutr Biochem 90:108571. https://doi.org/10.1016/j.jnutbio.2020.108571

    Article  CAS  PubMed  Google Scholar 

  29. Alfaro TM, Monteiro RA, Cunha RA, Cordeiro CR (2018) Chronic coffee consumption and respiratory disease: a systematic review. Clin Respir J 12(3):1283–1294. https://doi.org/10.1111/crj.12662

    Article  PubMed  Google Scholar 

  30. Kuo CD, Shiao GM, Lee JD (1993) The effects of high-fat and high-carbohydrate diet loads on gas exchange and ventilation in COPD patients and normal subjects. Chest 104(1):189–196. https://doi.org/10.1378/chest.104.1.189

    Article  CAS  PubMed  Google Scholar 

  31. Kumasaka D, Lindeman KS, Clancy J, Lande B, Croxton TL, Hirshman CA (1996) MgSO4 relaxes porcine airway smooth muscle by reducing Ca2+ entry. Am J Physiol 270(3 Pt 1):L469–L474. https://doi.org/10.1152/ajplung.1996.270.3.L469

    Article  CAS  PubMed  Google Scholar 

  32. Hill J, Lewis S, Britton J (1997) Studies of the effects of inhaled magnesium on airway reactivity to histamine and adenosine monophosphate in asthmatic subjects. Clin Exp Allergy 27(5):546–551

    Article  CAS  PubMed  Google Scholar 

  33. Komaki F, Akiyama T, Yamazaki T, Kitagawa H, Nosaka S, Shirai M (2013) Effects of intravenous magnesium infusion on in vivo release of acetylcholine and catecholamine in rat adrenal medulla. Auton Neurosci 177(2):123–128. https://doi.org/10.1016/j.autneu.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  34. Ferrè S, Baldoli E, Leidi M, Maier JA (2010) Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochim Biophys Acta 1802(11):952–958. https://doi.org/10.1016/j.bbadis.2010.06.016

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, GXG and LZF; Data curation, LZF, LHW and LWZ; Writing – original draft, LZF, LHW, LXY and WYY; Writing – review & editing, HZM; Supervision, GXG. All authors contributed to the article and approved the final version of the manuscript.

Corresponding author

Correspondence to Xu-Guang Guo.

Ethics declarations

Ethics Approval

All NHANES protocols utilized in this study received approval from the CDC’s National Center for Health Statistics Institutional Research Ethics Review Board.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, ZF., Lin, HW., Liao, WZ. et al. The Association Between Dietary Magnesium Intake with Chronic Obstructive Pulmonary Disease and Lung Function in US Population: a Cross-sectional Study. Biol Trace Elem Res 202, 3062–3072 (2024). https://doi.org/10.1007/s12011-024-04073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-024-04073-z

Keywords

Navigation